1. Предмет и задачи метрологии
Под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.
Происхождение самого термина «метрология» возводят к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец ХХ в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Таким образом, можно сказать, что метрология изучает:
1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;
2) измерения физических величин и технических параметров, а также свойств и состава веществ;
3) измерения для контроля и регулирования технологических процессов.
Выделяют несколько основных направлений метрологии:
1) общая теория измерений;
2) системы единиц физических величин;
3) методы и средства измерений;
4) методы определения точности измерений;
5) основы обеспечения единства измерений, а также основы единообразия средств измерения;
6) эталоны и образцовые средства измерений;
7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения.
Следует различать также объекты метрологии: 1) единицы измерения величин;
2) средства измерений;
3) методики, используемые для выполнения измерений и т. д.
Метрология включает в себя: во-первых, общие правила, нормы и требования, во-вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:
1) физических величинах, их единицах, а также об их измерениях;
2) принципах и методах измерений и о средствах измерительной техники;
3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;
4) обеспечении единства измерений, эталонах, образцах;
5) государственной метрологической службе;
6) методике поверочных схем;
7) рабочих средствах измерений.
В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.
2 Классификация измерений
Классификация средств измерений может проводиться по следующим критериям.
1. По характеристике точности измерения делятся на равноточные и неравноточные.
Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.
Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.
2. По количеству измерений измерения делятся на однократные и многократные.
3. По типу изменения величины измерения делятся на статические и динамические.
Статические измерения – это измерения постоянной, неизменной физической величины.
Динамические измерения – это измерения изменяющейся, непостоянной физической величины.
4. По предназначению измерения делятся на технические и метрологические.
Технические измерения – это измерения, выполняемые техническими средствами измерений.
Метрологические измерения – это измерения, выполняемые с использованием эталонов.
5. По способу представления результата измерения делятся на абсолютные и относительные.
Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).
6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.
Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).
Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.
Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.
3. Основные характеристики измерений
Выделяют следующие основные характеристики измерений:
1) метод, которым проводятся измерения;
2) принцип измерений;
3) погрешность измерений;
4) точность измерений;
5) правильность измерений;
6) достоверность измерений.
Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.
Существует несколько критериев классификации методов измерений.
1. По способам получения искомого значения измеряемой величины выделяют:
1) прямой метод (осуществляется при помощи прямых, непосредственных измерений);
2) косвенный метод.
2. По приемам измерения выделяют:
1) контактный метод измерения;
2) бесконтактный метод измерения.
Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом.
При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.
3. По приемам сравнения величины с ее мерой выделяют:
1) метод непосредственной оценки;
2) метод сравнения с ее единицей.
Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины.
Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.
Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение.
Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины.
Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.
Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность).
Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений.
4 Понятие о физической величине Значение систем физических единиц
Физическая величина является понятием как минимум двух наук: физики и метрологии. По определению физическая величина представляет собой некое свойство объекта, процесса, общее для целого ряда объектов по качественным параметрам, отличающееся, однако, в количественном отношении (индивидуальная для каждого объекта). Есть целый ряд классификаций, созданных по различным признакам. Основными из них является деления на:
1) активные и пассивные физические величины – при делении по отношению к сигналам измерительной информации. Причем первые (активные) в данном случае представляют собой величины, которые без использования вспомогательных источников энергии имеют вероятность быть преобразованными в сигнал измерительной информации. А вторые (пассивные) представляют собой такие величины, для измерения которых нужно использовать вспомогательные источники энергии, создающие сигнал измерительной информации;
2) аддитивные (или экстенсивные) и неаддитивные (или интенсивные) физические величины – при делении по признаку аддитивности. Считается, что первые (аддитивные) величины измеряются по частям, кроме того, их можно точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер. А вторые (неаддитивные) величины прямо не измеряются, так как они преобразуются в непосредственное измерение величины или измерение путем косвенных измерений. В 1791 г. Национальным собранием Франции была принята первая в истории система единиц физических величин. Она представляла собой метрическую систему мер. В нее входили: единицы длин, площадей, объемов, вместимостей и веса. А в их основу были положены две общеизвестные ныне единицы: метр и килограмм.
В основу своей методики ученый заложил три основные независимые друг от друга величины: массу, длину, время. А в качестве основных единиц измерения данных величин математик взял миллиграмм, миллиметр и секунду, поскольку все остальные единицы измерения можно с легкостью вычислить с помощью минимальных. Так, на современном этапе развития выделяют следующие основные системы единиц физических величин:
1) система СГС (1881 г.);
2) система МКГСС (конец XIX в.);
3) система МКСА (1901 г.)
5. Международная система единиц
Решениями Генеральной конференции по мерам и весам приняты такие определения основных единиц измерения физических величин:
1) метр считается длинной пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;
2) килограмм считается приравненным к существующему международному прототипу килограмма;
3) секунда равна 919 2631 770 периодам излучения, соответствующего тому переходу, который происходит между двумя так называемыми сверхтонкими уровнями основного состояния атома Cs133;
4) ампер считается мерой той силы неизменяющегося тока, вызывающего на каждом участке проводника длиной 1 м силу взаимодействия при условии прохождения по двум прямолинейным параллельным проводникам, обладающим такими показателями, как ничтожно малая площадь кругового сечения и бесконечная длина, а также расположение на расстоянии в 1 м друг от друга в условиях вакуума;
5) кельвин равен 1/273,16 части термодинамической температуры, так называемой тройной точки воды;
6) моль равен количеству вещества системы, в которую входит такое же количество структурных элементов, что и в атомы в С12 массой 0,01 2 кг.
Кроме того, Международная система единиц содержит две достаточно важные дополнительные единицы, необходимые для измерения плоского и телесного углов. Так, единица плоского угла – это радиан, или сокращенно рад, представляющий собой угол между двух радиусов окружности, длина дуги между которыми равняется радиусу окружности. Если речь идет о градусах, то радиан равен 57°17' 48''. А стерадиан, или ср, принимаемый за единицу телесного угла, представляет собой, соответственно, телесный угол, расположение вершины которого фиксируется в центре сферы, а площадь, вырезаемая данным углом на поверхности сферы, равна площади квадрата, сторона которого равна длине радиуса сферы. Другие дополнительные единицы СИ используются для формирования единиц угловой скорости, а также углового ускорения и т. д. Радиан и стерадиан используются для теоретических построений и расчетов, поскольку большая часть значимых для практики значений углов в радианах выражаются трансцендентными числами. К внесистемным единицам относятся следующие:
1) за логарифмическую единицу принята десятая часть бела, децибел (дБ);
2) диоптрия – сила света для оптических приборов;
3) реактивная мощность – Вар (ВА);
4) астрономическая единица (а. е.) – 149,6 млн км;
5) световой год, под которым понимается такое расстояние, которое луч света проходит за 1 год;
6) вместимость – литр;
7) площадь – гектар (га).
Существуют также единицы, вообще не входящие в СИ. Это в первую очередь такие единицы, как градус и минута. Все остальные единицы считаются производными, которые согласно Международной системе единиц образуются с помощью самых простейших уравнений с использованием величин, числовые коэффициенты которых приравнены к единице. Если в уравнении числовой коэффициент равен единице, производная единица называется когерентной.
6. Физические величины и измерения
Объектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов. Разделяют основные и производные от основных величины. Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы – это радиан и стерадиан. У физических величин есть качественные и количественные характеристики.
Качественное различие физических величин отражается в их размерности. Обозначение размерности установлено международным стандартом ИСО, им является символ dim*.
Количественная характеристика объекта измерения – это его размер, полученный в результате измерения. Самый элементарный способ получить сведения о размере определенной величины объекта измерения – это сравнить его с другим объектом. Результатом такого сравнения не будет точная количественная характеристика, оно позволит лишь выяснить, какой из объектов больше (меньше) по размеру. Сравниваться могут не только два, но и большее число размеров. Если размеры объектов измерения расположить по возрастанию или по убыванию, то получится шкала порядка. Процесс сортировки и расположения размеров по возрастанию или по убыванию по шкале порядка называется ранжированием. Для удобства измерений определенные точки на шкале порядка фиксируются и называются опорными, или реперными точками. Фиксированным точкам шкалы порядка могут ставиться в соответствие цифры, которые часто называют баллами.