Жанры
Регистрация
Читать онлайн Статистика. Ответы на экзаменационные билеты бесплатно

Статистика. Ответы на экзаменационные билеты



1. Предмет, методы и задачи статистики

Статистика как термин может трактоваться в двух значениях:

1) статистика как отрасль знаний (наука);

2) статистика как форма практической деятельности (государственная статистика, ведомственная статистика).

Предмет изучения статистики – это количественная сторона массовых общественных явлений и процессов, неразрывные в связи с их качественным содержанием в конкретных условиях времени и места, изучаемая с целью выявления числовых закономерностей, тенденций. Данное определение считается общепринятым определением, согласно которому статистика стала считаться общественной наукой.

Статистика изучает количественную сторону явлений и процессов в неразрывной связи с их качественной стороной, т. е. измеряя с помощью показателей те или иные явления, показывает, что скрывается за ними, каково их содержание.

Объект изучения статистики – это общество, явления и процессы общественной жизни.

Статистическое исследование совокупностей позволяет устранить случайные факторы и выявить общие черты, закономерности. В подобных случаях статистика опирается на закон больших чисел, который характеризует прямую зависимость полного проявления закономерности от числа наблюдений.

Теоретическую основу статистики составляют такие науки, как философия и экономическая теория. Эти науки исследуют и формируют законы общественного развития, а статистика дает конкретную числовую характеристику закономерностям общественных явлений. В соответствии с философскими законами диалектики статистика изучает явления в их взаимосвязи, развитии (в изменении). Она изучает, как осуществляется переход от количественных изменений к качественным, выясняет, как внедряется новое, прогрессивное в развитии экономики общества.

Если предмет статистики определяет, что конкретно она изучает количественную сторону массовых явлений и процессов, то ее метод характеризует, каким образом это достигается. Базовым, всеобщим является метод познания, или диалектический материализм. Опираясь на этот метод, статистика выработала и свои специфические методы, к которым относятся:

1) метод массового статистического наблюдения, в т. ч. выборочный метод;

2) метод статистической сводки и группировки. При сводке широко используются табличный и графический методы;

3) метод научной обработки и анализа статистических данных с помощью обобщающих показателей.

К таким показателям относятся:

1) абсолютные и относительные величины;

2) средние величины (метод средних);

3) показатели вариации (колеблемости);

4) индексы (индексный метод);

5) методы измерения динамики;

6) показатели тесноты связи.

Помимо вышеназванных, в статистике широко используются и другие методы: балансовый метод, методы математической статистики (дисперсионный анализ, корреляционный и регрессионный анализ) и др.

Основными задачами статистики являются:

1) статистическое наблюдение за развитием экономики и общества с помощью различных видов и способов сбора данных;

2) контроль, проверка содержания различной информации, поступающей в органы статистики;

3) свод отчетности снизу доверху;

4) научная обработка, обобщение, анализ всех материалов наблюдений, в т. ч. выборочных, специально организованных;

5) комплексное изучение экономики, анализ ее состояния, развитие тенденций, закономерностей в масштабах регионов, страны, различных форм собственности, хозяйствования, секторов и отраслей экономики;

6) подготовка и публикация статистических материалов (статистических сборников, ежегодников, пресс-выпусков, докладов) о развитии страны, регионов, отраслей и т. д.;

7) совершенствование учета, отчетности, системы показателей и методов анализа.

2. Основные этапы статистического исследования. Статистическое наблюдение

В основе любого статистического исследования лежат три взаимосвязанных этапа работы:

1) статистическое наблюдение;

2) сводка и группировка данных наблюдения;

3) научная обработка и анализ результатов сводки. Каждая последующая стадия статистического исследования может быть проведена при условии, что были осуществлены предшествующие (предшествующая) ей стадии работы.

Статистическое наблюдение – это первая стадия статистического исследования.

Статистическое наблюдение – это планомерное, научно организованное собирание сведений о той или иной совокупности общественных и, в частности, экономических явлений или процессов.

Статистические наблюдения весьма многообразны и различаются характером исследуемых явлений, формой организации, временем наблюдения, полнотой охвата изучаемых явлений. В связи с этим была проведена классификация статистических наблюдений по отдельным признакам.

1. По форме организации статистические наблюдения делятся на отчетность и специально организованные статистические наблюдения.

Отчетность – это основная организационная форма статистического наблюдения, которая сводится к собиранию сведений от предприятий, учреждений и организаций о различных сторонах их деятельности на специальных бланках, называемых отчетами. Отчетность носит обязательный характер. Отчетность делится на основную и текущую в зависимости от продолжительности периода, относительно которого она составляется.

Основная отчетность также называется годовой и содержит наиболее широкий круг показателей, охватывающих все стороны деятельности предприятия.

Текущая отчетность представляется в течение года за различные по продолжительности промежутки времени.

Однако существуют данные, которые принципиально невозможно получить на основе отчетности и данные, которые нецелесообразно включать в нее. Именно для получения этих двух видов данных используются специально организованные статистические наблюдения – различного рода обследования и переписи.

Статистические обследования – это такие специально организованные наблюдения, при которых исследуемая совокупность явлений подвергается наблюдению в течение определенного периода времени.

Перепись – это такая форма специально организованного статистического наблюдения, при котором исследуемая совокупность явлений наблюдается на какую-либо дату (на некоторый момент).

2. По признаку времени все статистические наблю дения делятся на непрерывные и прерывные.

Непрерывное (текущее) статистическое наблюдение – это наблюдение, которое осуществляется во времени непрерывно. При данном виде наблюдения отдельные явления, факты, события регистрируются по мере их возникновения.

Прерывное статистическое наблюдение – это наблюдение, при котором наблюдаемые явления, факты, события регистрируются не непрерывно, а через периоды времени равной или неравной продолжительности. Различают две разновидности прерывного наблюдения – периодическое и единовременное. Периодическим называется прерывное наблюдение, которое проводится через периоды времени равной продолжительности. Единовременным называется наблюдение, которое проводится через периоды времени неравной продолжительности или имеющие разовый характер.

3. По признаку полноты охвата изучаемой массы явлений, фактов, событий статистические наблюдения делятся на сплошные и несплошные, или частичные.

Сплошное наблюдение имеет целью учет всех без исключения явлений, фактов, событий, образующих исследуемую совокупность.

Несплошное наблюдение имеет целью учет лишь некоторой части явлений, фактов, событий, образующих исследуемую совокупность.

3. Сводка и группировка статистических материалов

В результате статистического наблюдения собирают сведения о каждой единице наблюдения, т. е. исходный материал. Дальнейшая задача состоит в приведении этого материала в определенный порядок. Она решается с помощью сводки.

Сводка в узком смысле слова – это подсчет итогов в группах и подгруппах и оформление этого материала в таблицы.

Сводка в широком смысле слова – это процесс рациональной обработки данных наблюдения с целью приведения их в стройную систему, удобную для анализа и практического использования.

Основная задача сводки состоит в систематизации и обобщении результатов наблюдения таким образом, чтобы стали возможными выявление характерных черт совокупности и определение тенденции в целом.

Этапы сводки:

1) группировка полученных при наблюдении данных;

2) разработка системы показателей, характеризующих типичные группы и подгруппы изучаемой совокупности явлений;

3) подсчет итогов в группах и подгруппах;

4) оформление таблиц.

Программа сводки в общем виде содержит перечень групп, на которые нужно распределить совокупность, а также перечень показателей, используемых для характеристики совокупности в целом, ее отдельных частей.

План сводки – это этапы ее последовательности, сроки выполнения отдельных частей сводки, исполнители и порядок изложения результатов сводки.

В результате сводки получают итоги по показателям, однако этих сведений недостаточно для анализа и выявления закономерностей, поэтому необходимо выделять из общей совокупности какие-то части, группы. Эту задачу решает группировка.

Группировка – это метод, который позволяет распределить совокупность на группы по признакам сходства или различия. Одним из важнейших этапов группировки является выбор группировочного признака, потому что от этого зависят результаты сводки и группировки в целом. Выбор признаков в каждом конкретном случае должен основываться на экономической сущности изучаемого явления, на основе тщательного анализа.

С помощью метода группировки решаются следующие важнейшие задачи:

1) выделение социально-экономических типов;

2) определение структуры однотипных совокупностей;

3) выявление связи и зависимости между явлениями.

Существуют несколько различных классификаций группировок.

В зависимости от задач, решаемых группировкой, выделяют:

1) типологические группировки – в их основе лежит выделение социально-экономических типов общественных явлений;

2) структурные группировки – характеризующие распределение какой-либо совокупности на группы в процентах к итогу;

3) аналитические группировки – характеризующие взаимосвязь между изучаемыми признаками.

В зависимости от количества группировочных признаков выделяют:

1) простые группировки – это распределение совокупности на группы по одному признаку;

2) комбинационные группировки – это распределение совокупности по двум-трем признакам, взятым в комбинации друг с другом. В этой группировке группы, образованные по одному признаку, разделяются на подгруппы по другому признаку.

В зависимости от характера группировочного признака различают:

1) атрибутивные группировки – в их основе лежит качественный признак, выражающийся словом;

2) количественные группировки – в их основе лежит количественный признак, выражающийся числом.

В зависимости от характера статистических данных различают:

1) первичные группировки – это группировки, построенные непосредственно на основе данных наблюдения. Эти группировки осуществляются органами статистики или предприятиями;

2) вторичные группировки – это группировки, построенные на основе данных других группировок, т. е. это образование новых групп на основе ранее проведенной группировки.

4. Статистические показатели. Система статистических показателей

Статистические показатели предназначены для характеристики количественной стороны исследуемых массовых социальных и экономических явлений. В связи с тем, что статистика изучает массовые явления, статистические показатели дают обобщающую характеристику какой-либо совокупности. Этим статистические показатели отличаются от индивидуальных значений, характеризующих исследуемое явление, которые называются признаками.

При построении статистических показателей существует ряд требований, которые должны быть учтены:

1) необходимо опираться на экономическую теорию, сущность, природу изучаемого явления;

2) необходимо опираться на статистическую методологию, опыт работы;

3) необходимо добиваться полноты информации по охвату изучаемого объекта;

4) необходимо добиваться соответствия по смыслу сравниваемых показателей;

5) необходимо обеспечивать сравнимость статистических показателей во времени и пространстве, использовать одинаковые единицы измерения;

6) необходимо знать возможные границы существования показателя;

7) необходимо, чтобы статистические показатели повышали степень точности исходной информации, на основе которой исчисляются показатели.

Статистические показатели выполняют ряд функций:

1) познавательную функцию, которая заключается в том, что статистические показатели характеризуют состояние и развитие изучаемых явлений, направление и интенсивность процессов. Обобщающие статистические показатели являются базой для анализа, прогнозов;

2) оценочно-стимулирующую функцию, возлагаемую на статистические показатели в том случае, когда от величины показателя зависит оценка деятельности предприятия;

3) пропагандистскую функцию (была важна при социализме). Сейчас ее реализация также возможна, если статистические показатели рассчитаны достоверно и не служат чьим-либо интересам.

В связи с многообразием статистических показателей существует большое количество их классификаций по различным признакам:

1) по сущности экономических явлений: объемные, качественные, демографические, социальные и другие показатели;

2) по статистическим свойствам явлений и процессов: абсолютные и относительные величины, средние величины, показатели вариации, показатели динамики, индексы;

3) по степени агрегирования: единичные (индивидуальные), групповые, общие (сводные) показатели;

4) по отношению к характеризуемому свойству: прямые и обратные показатели;

5) по признаку времени: интервальные и моментные показатели.

Система – это множество элементов с различных сторон, находящихся в связях между собой, которые образуют определенную целостность, единство. Система статистических показателей – это совокупность показателей с различных сторон, отображающих состояние и развитие взаимосвязанных явлений. Виды и формы систем статистических показателей разнообразны и зависят от целей и задач, потребностей. Любая система статистических показателей строится на основе предварительного теоретического анализа изучаемого предмета. Содержательной стороной формирования системы статистических показателей должна быть взаимосвязь категорий соответствующих областей жизни.

При этом необязательно наличие функциональных связей, но все же система статистических показателей не простой набор статистических показателей. В системе статистических показателей любой показатель может быть вычислен на основе другого показателя этой системы.

Показателей очень много, поэтому зачастую в системе статистических показателей выделяют подсистемы, дополняющие друг друга. Системы статистических показателей классифицируются, как и статистические показатели, по различным признакам.

5. Абсолютные и относительные величины

Статистика изучает количественную сторону массовых явлений и процессов с помощью статистических величин, которые делятся на абсолютные и относительные величины.

Абсолютные величины характеризуют размеры в конкретных условиях времени и места. Они дают характеристику всей совокупности.

Единицы измерения абсолютных величин:

1) натуральные, отражающие природные свойства явления, – физическая мера веса, длины и др. Основной недостаток натуральных единиц измерения заключается в том, что невозможно суммирование различных натуральных абсолютных величин;

2) условно-натуральные (используются с целью суммирования разной по форме продукции потребительского назначения);

3) комбинированные. Их получают в результате перемножения или деления двух натуральных единиц измерения;

4) стоимостные (денежные). Устраняют недостатки предыдущих единиц измерения, позволяют оценить разнородную продукцию.

Однако абсолютные величины не дают всеобъемлющей характеристики исследуемых явлений и процессов и не всегда пригодны для сравнения. Это вызывает необходимость использования относительных величин, которые используются при сопоставлениях, сравнениях и исполняют роль меры соотношения.

Относительные величины – это отвлеченные статистические величины, выражающие количественное соотношение двух величин.

Виды относительных величин: 1) относительные величины динамики – это отношение фактической величины показателя в отчетном периоде (у1) к фактической его величине в базисном, предшествующем периоде (у0):

ОВД = Y1 / Y0 × 100 %.

Относительные величины динамики характеризуют изменение явления во времени. В статистике эти показатели называются темпами роста;

2) относительные величины выполнения плана – это отношение фактической величины показателя (у1) к плановой его величине (упл) того же периода:

ОВВП = Y1 / Yпл × 100 %.

Эта относительная величина показывает степень выполнения плана в процентах;

3) относительная величина выполнения планового задания – это отношение планируемой величины показателя (уПЛ) к фактически достигнутой величине в предшествующем периоде, т. е. в базисном (у0):

ОВПЗ = Yпл / Y0 × 100 %.

Показывает, на сколько процентов плановое задание выше (ниже) фактически достигнутого в базисном периоде. Эту величину называют плановым темпом роста;

4) относительная величина структуры – показывает состав явления, выраженный в форме доли или удельного веса. Доля (d) – это отношение части к целому, т. е. отношение составных частей совокупности к ее общему объему. Удельный вес – это доля, выраженная в процентах. Относительные величины структуры используются в статистике для характеристики структурных сдвигов;

5) относительная величина координации – показывает соотношение частей целого, т. е. отношение последовательно всех частей к одной из них, взятой за базу. За базу принимают наименьшее значение. Относительная величина координации показывает, сколько единиц данной части целого приходится на другую ее часть, принятую за базу сравнения;

6) относительная величина интенсивности – это отношение двух разноименных величин, связанных между собой. Характеризует степень развития какого-либо явления в определенной среде;

7) относительная величина сравнения – это отношение одноименных величин, характеризующих разные объекты изучения за один и тот же период. Показывает, во сколько раз числитель больше (меньше) знаменателя.

6. Сущность средних величин. Виды и формы средних величин. Варианты и частоты

Метод средних величин является одним из наиболее важных методов в статистике, потому что средние величины широко используются в анализе, на практике, при установлении закономерностей, тенденций, связей и для множества других целей. Суть средних величин состоит в том, что они одним числом характеризуют уровень исследуемого признака. Отличительной особенностью средних величин является то, что они представляют собой обобщающие показатели.

Средняя величина – это обобщающий показатель, выражающий типичный уровень (размер) варьирующего признака в расчете на единицу совокупности (качественно однородной).

Средняя величина отражает то общее, что скрывается в каждой единице совокупности. Она улавливает общие черты, общие закономерности, которые проявляются в силу закона больших чисел. Говоря о средних величинах, имеют в виду, что они характеризуют всю совокупность в целом, однако, наряду со средней необходимо приводить данные об отдельных единицах совокупности.

Задачи, решаемые с помощью метода средних величин:

1) характеристика уровня развития исследуемого явления;

2) сравнение двух или нескольких уровней исследуемых совокупностей;

3) характеристика изменения уровня явления во времени;

4) выявление и характеристика связей между исслеуемыми совокупностями.

Принципы построения средних величин:

1) средние величины могут быть рассчитаны только лишь для качественно однородных совокупностей;

2) средние величины не должны быть абстрактными, т. е. только количественными показателями. Они должны давать качественно-количественную характеристику исследуемому явлению. Поэтому в статистике средняя величина представляет собой не абстрактное, отвлеченное число, а вполне конкретный показатель, относимый к какому-либо явлению, месту, времени;

3) выбор единицы совокупности, по отношению к которой рассчитывается средняя величина, должен быть теоретически обоснован.

Выделяются следующие основные виды средних величин: средняя арифметическая; средняя гармоническая; средняя квадратическая; средняя геометрическая.

Для правильного расчета средних величин необходимо ввести такие понятия, как варианты и частоты.

В результате сводки и группировки получают статистические ряды, т. е. ряды цифровых показателей. По своему содержанию такие ряды делятся на ряды распределения и ряды динамики.

Ряды распределения характеризуют распределение единиц совокупности по какому-либо одному признаку, разновидности которого упорядочены определенным образом. Различают два вида рядов распределения – атрибутивные и вариационные ряды.

Атрибутивные ряды образуются в результате группировки данных по качественным признакам (например, распределение населения по полу). В этих рядах столько групп, сколько вариантов качественного признака.

Вариационный ряд – это упорядоченный ряд значений варьирующего количественного признака и численности единиц, имеющих данное значение признака (например, распределение рабочих по заработной плате).

В вариационном ряду распределения выделяют следующие элементы:

1) варианты (х или х1, х2 … хn) – это ряд числовых значений количественного признака (например, стаж, заработная плата, возраст). Варианты могут быть как абсолютными, так и относительными величинами;

2) частоты (m: m1, m2 … mn) – это числа, показывающие, сколько раз повторяются соответствующие варианты (например, число рабочих). Частоты, как правило, обозначаются абсолютным числом; если по условию частоты выражены в виде процентов к итогу или долей, то их называют относительными частотами (или) частотами f:

f = m / Σm.

7. Средняя арифметическая

Основной средней величиной является средняя арифметическая. Выделяют простую и взвешенную среднюю арифметическую.

Базой для расчета простой средней арифметической являются первичные записи результатов наблюдения. Предположим, что известны значения признака x1x2, …, хп. Каждое из этих значений повторяется один раз (или теоретически одинаковое количество раз), т. е. данные не сгруппированы. Тогда для такого ряда следует использовать формулу средней арифметической простого ряда или простую среднюю арифметическую:

Рис.0 Статистика. Ответы на экзаменационные билеты

где х — значение варьирующегося признака;

n – число единиц совокупности.

Базой для расчета взвешенной средней арифметической является обработанный цифровой материал, т. е. сгруппированные данные. Для таких данных используется формула средней арифметической взвешенной:

Рис.1 Статистика. Ответы на экзаменационные билеты

где х — значение варьирующегося признака;

m – веса, т. е. частоты, показывающие, сколько раз повторяется каждое значение признака в данной совокупности.

Формула получена путем взвешивания значений каждой варианты и деления суммы вариант на сумму весов. Формулы простой и взвешенной средней арифметической не эквивалентны друг другу.

Свойства средней арифметической:

1) алгебраическая сумма отклонений всех вариантов от средней арифметической равна нулю:

x = Σxm /Σm => x Σm = Σxm =>Σ(х-х)m = 0.

Это свойство используется для проверки правильности расчетов;

2) сумма квадратов отклонений вариант от их средней арифметической больше суммы квадратов отклонений вариант от любого другого числа, не равного средней арифметической:

Рис.2 Статистика. Ответы на экзаменационные билеты

где x a;

3) среднее алгебраическое суммы нескольких варьирующихся признаков равно сумме средних этих признаков:

k = x + y + z + …;

Рис.3 Статистика. Ответы на экзаменационные билеты
Рис.4 Статистика. Ответы на экзаменационные билеты

Это свойство позволяет определить сумму путем суммирования значений каких*либо признаков;

4) если все варианты (х) увеличить или уменьшить на какое-либо постоянное число (а), средняя (x) увеличится или уменьшится на то же самое число (y):

(х – а) = у;

x – a = y;

Рис.5 Статистика. Ответы на экзаменационные билеты

5) если все варианты (х) увеличить или уменьшить в одно и то же число раз (в), то средняя арифметическая увеличится или уменьшится в то же самое число раз:

если

Рис.6 Статистика. Ответы на экзаменационные билеты
,
Рис.7 Статистика. Ответы на экзаменационные билеты
 то,

Рис.8 Статистика. Ответы на экзаменационные билеты

8. Средняя гармоническая, геометрическая, квадратическая, степенная

При решении задач расчет средней величины начинается с составления исходного отношения – логической словесной формулы средней. Она составляется на основе теоретического и логического анализа. Иногда среднюю арифметическую нельзя использовать. В этом случае в зависимости от ситуации применяется одна из трех форм средней.

Средняя гармоническая простая строится по формуле:

Рис.9 Статистика. Ответы на экзаменационные билеты

где n — число единиц совокупности или число вариантов;

х — значения варьирующегося признака.

Средняя гармоническая простая используется для несгруппированных данных.

Средняя гармоническая взвешенная строится по формуле:

Рис.10 Статистика. Ответы на экзаменационные билеты

где х — значения варьирующего признака;

m — веса;

n — число единиц совокупности. Среднюю гармоническую взвешенную используют для сгруппированных данных, т. е. когда каждое значение х повторяется различное число раз.

Средняя квадратическая простая строится по формуле:

Рис.11 Статистика. Ответы на экзаменационные билеты

где n — число единиц совокупности или число вариантов; х — значения варьирующегося признака.

Средняя квадратическая простая используется для несгруппированных данных.

Средняя квадратическая взвешенная строится по формуле:

Рис.12 Статистика. Ответы на экзаменационные билеты

где m – веса;

х – значения варьирующего признака.

Среднюю квадратическую взвешенную используют для сгруппированных данных.

Данные формулы используются редко, в специальных расчетах.

Средняя геометрическая простая строится по формуле:

Рис.13 Статистика. Ответы на экзаменационные билеты

где n – число единиц совокупности или число вариантов;