Ю. Г. Леонов[1]
Введение: о работах по направлению «Строение и история развития литосферы»
В данном – четвертом томе Трудов Международного Полярного Года (МПГ 2007/2008) отражены результаты исследований, выполненных в России, в рамках направления «Геологическая история и литосфера полярных районов».
Исследования велись по проектам, включенным в международную программу МПГ 2007/08, и по проектам национальным. С формальной точки зрения эти две группы проектов имеют разный статус, но по существу особых различий между ними нет: в том и другом случае работы проведены на ключевых объектах, по проблемам, представляющим интерес для решения региональных и общих проблем геологии и геофизики Арктики, а в плане финансирования – в соответствии с выделенными в той или иной организации средствами. По рассматриваемому направлению, силами организаций Российской академии наук (РАН) и Министерства природных ресурсов (МПР РФ), а точнее – входящего в его состав Федерального Агентства по недропользованию (Роснедра), было реализовано около 30 проектов. Некоторые проекты выполнялись смешанными коллективами и частично с международным участием. Из общего числа проектов 6–7 проектов относится к Антарктике, остальные – к Арктике.
Стратегическое руководство исследованиями и мероприятиями Полярного года осуществлял Национальный Оргкомитет по участию Российской Федерации в подготовке и проведении мероприятий в рамках Международного полярного года под руководством двух сопредседателей А.И. Бедрицкого – Руководителя Росгидромета и А.Н. Чилингарова – специального представителя Президента РФ по международному сотрудничеству в Арктике и Антарктике. Оперативная координационная работа выполнялась специально созданным Межведомственным научно-координационным Комитетом (МНКК), успешная деятельность которого была обеспечена Председателем Комитета И.Е. Фроловым (директором Арктического и Антарктического научно-исследовательского института), заместителем Председателя А.И. Даниловым и ученым секретарем В.Г. Дмитриевым.
Полярные исследования 2007–2008 годов в значительной части проводились под флагом МПГ 2007/08. Но не все. Здесь необходимо подчеркнуть, что кроме них были и другие – плановые работы различных организаций, формально не включенные в программы МПГ 2007/08. В данной книге, имеющей определенную направленность, они, как правило, не рассматриваются, хотя их итоги не менее важны. Вообще же результаты и достижения МПГ 2007/08, сколь бы примечательны они не были, невозможно обособить от большого и многообразного комплекса исследований, постоянно ведущихся в полярных областях. Проблемы, задачи Полярного года в большинстве своем возникли не вдруг и не на пустом месте, и по истечении Полярного года исследования не заканчиваются. Это – хоть и важный и яркий, но все-таки лишь этап в изучении полярных областей.
Что касается «года» – то это понятие в данном случае условное: на самом деле он продолжался два календарных года 2007 и 2008, а если к этому прибавить время на подготовительные мероприятия и завершающую обработку материалов, то этот срок еще увеличивается.
Знакомясь с результатами геологических и геофизических работ Полярного года, изложенными в данной книге, следует, в частности, иметь в виду, что в годы, предшествовавшие МПГ 2007/08 в России было опубликовано много работ – статей, монографий, сборников, карт, в том числе и таких, в которых подводятся итоги (не обязательно окончательные) по тем или иным направлениям и проблемам изучения Арктики и Антарктики по состоянию примерно на начало – отчасти середину первого десятилетия текущего века. Перечислить даже самые значительные из них невозможно. Но ряд работ обращает на себя особое внимание. К их числу относятся, например, подготовленные большими авторскими коллективами публикации, в которых заключена огромная информация: серия тектонических карт для краевых арктических (и дальневосточных) морей, составленных под руководством Н.А. Богданова и В.Е. Хаина, монументальные сборники – «Российская Арктика» (СПб, 2002 г.), посвященный 80-летнему юбилею И.С. Грамберга, и «60 лет в Арктике, Антарктике и Мировом океане» (СПб, 2008), посвященный 60-летию ВНИИОкеангеология.
Новые данные, полученные по проектам МПГ 2007/08, пополняют имеющуюся информацию, по ряду направлений существенно. И, что весьма важно, благодаря Полярному году удалось, с одной стороны, завершить и подвести итоги по некоторым темам и направлениям, материал по которым накапливался годами, с другой – инициировать некоторые новые важные исследования.
Данная книга дает довольно полное представление о выполненных работах и полученных результатах. Вместе с тем, написана она, если можно так сказать, «по свежим следам», и поэтому кое-что из представленных в ней материалов подлежит дальнейшей обработке и обдумыванию.
Содержание книги говорит само за себя, так что комментарии могут быть сведены к минимуму.
Материал сгруппирован в нескольких разделах; прежде всего, выделены разделы (части) по Антарктике и Арктике.
В Антарктиде выполнены сухопутные и морские исследования.
На материке изучались проблемы докембрийской геологии, были обобщены (с составлением карты) данные по подледному рельефу. Кроме того, в процессе работы по международному проекту «TEMPORE», ориентированному на составление новой тектонической карты Антарктиды (в паре с аналогичной картой для Арктики), был обобщен огромный материал и предложен синтез тектонической истории Антарктиды на уровне её современной изученности и в свете современного состояния геодинамических идей (статья: Г.Э. Грикуров и др.).
В антарктических водах проведены два цикла морских экспедиций. Один из них – экспедиции института ВНИИОкеангеология и Полярной морской геолого-разведочной экспедиции (ПМГРЭ) с участием Института Вегенера (Германия) на двух научно-исследовательских судах – «Александр Карпинский» и «Polarstern» в антарктической части Индийского океана (море Содружества, море Дейвиса, плато Кергелен). Второй цикл – экспедиции Института геохимии и аналитической химии им В.Н.Вернадского (ГЕОХИ РАН) на судне «Академик Петров» в море Скоша и в Тасмано-Антарктическом проходе. Полученные данные изложены в статьях Г.Л. Лейченкова и др. и Г.Б. Удинцева и др.
В Арктике тематика работ отличалась большим разнообразием. Из морских работ следует упомянуть цикл экспедиций Геологического института (ГИН РАН) совместно с Норвежским нефтяным Директоратом и при участии сотрудников Института геохимии и аналитической химии им. В.И.Вернадского (ГЕОХИ РАН) на научно-исследовательском судне «Академик Н.Страхов». Исследования имели комплексный характер и велись по линии нескольких проектов МПГ 2007/08. Район экспедиций располагался в северной части шельфа Баренцева моря с детальными работами на трех полигонах: в водах к юго-западу от архипелага Земля Франца Иосифа (полигон «ЗФИ»), непосредственно к востоку от о. Северо-Восточная Земля архипелага Шпицберген (полигон «желоб Орла-Стурё»), в треугольнике между архипелагом Шпицберген, о. Медвежий и хр. Книпповича (в «устье» Медвежинского желоба). Интересы лежали в области изучения малоисследованных проблем геодинамики области перехода от континента к океану с акцентом на изучении верхних горизонтов чехла, рельефа морского дна, особенностей магматизма и геотермического режима. Изучение этих элементов дополнялось выборочными исследованиями на островной суше (Шпицберген и Земля Франца Иосифа) и в Северной Атлантике (хр. Книпповича и область континентального склона).
Материалы указанных экспедиций изложены в нескольких статьях в разделе 2 «Геология и геофизика морского дна, морские экспедиции в Арктике». В этом же разделе помещена статья (О.В. Петров и др.) с описанием гранитов из донных осадков в подножье хр. Ломоносова, имеющая отношение к проблеме тектонической природы хребта.
В нескольких районах Арктики проведены (в основном, как продолжение или завершение работ прежних лет) наземные геологические и геофизические исследования. Их результаты представлены в статьях раздела 3 «Геологическое строение районов и тектонических элементов Арктики». Исследования направлены на решение крупных задач регионального характера. Но, помимо этого, полученные данные во многих случаях дают ценный материал для выводов и создания моделей более общего порядка. В большей или меньшей степени они могут быть использованы, и используются авторами, для контроля за построениями, относящимися к внутренним частям Арктического бассейна.
Сказанное относится ко многим работам по шельфовому и материковому обрамлению восточной половины Арктического бассейна, в особенности Канадской котловины, существующие схемы геологического строения которой почти все малоубедительны. Это придает особое значение работам, выполненным в группе Новосибирских о-вов (в течение МПГ 2007/08 на островах Столбовой и Бельковский) (статья: А.Б.Кузьмичев, М.К.Данукалова), материал которых использован для тестирования существующих моделей раскрытия бассейна, и на о. Врангеля, играющем важную роль в палеотектонических реконструкциях мелового Южно-Анюйского океана – одного из ключевых элементов Восточной Арктики (статья: С.Д. Соколов и др.).
К этой же категории работ, дающих материал для обсуждения дискуссионных проблем геологии Арктики, относятся: уточнение модели современной геодинамики Северного Верхоянья и моря Лаптевых – района, играющего ключевую роль в вопросе продолжения на континенте спредингового хребта Гаккеля (статья: Л.П. Имаева и др.); разработка уточненной схемы корреляции каледонских структур Атлантического сектора Арктики (проект А.М. Тебенькова); существенные уточнения, касающиеся петрохимии и хронологии формирования мезозойских магматических комплексов о-вов ЗФИ и их положения в геодинамической истории Баренцевоморской области (статья: Э.В. Шипилов, Ю.В. Карякин).
Проблемы тектоники и строения земной коры материковой части и шельфа Западной Арктики, решались в проектах, посвященных изучению района Белого и южной части Баренцева морей. Для этого района, во-первых, составлена новая тектоническая карта, акцент в которой сделан на рифейских и палеозойских рифтах – важном структурообразующем элементе коры (статья: А.С. Балуев и др), во-вторых, создана сейсмогеологическая модель литосферы по профилю ГСЗ-ОГТ, проходящему по суше и акватории Белого моря (статья: А.И.Слабунов и др.).
В плане обобщающих исследований особое место принадлежит разработке панарктических (или циркумарктических) стратиграфических схем. В течение МПГ 2007/08 силами сотрудников нескольких институтов РАН, организаций агентства Роснедра, МГУ и ряда других госуниверситетов, был выполнен очередной, если и не завершающий, то позволяющий расставит многие точки над «i» этап исследований для мезозоя. Район полевых работ охватывал полярные и приполярные территории Евразии от Шпицбергена до Новосибирских островов. Но основе полученных материалов созданы новые реконструкции палеогеографической, гидрологической и климатической ситуации на территории Арктики (статья: В.А. Захаров и др.). Одновременно сделаны серьезные шаги по увязке реперных элементов арктических (бореальных) и южных (тетических) стратиграфических схем. В частности, впервые за более чем столетний период усилий специалистов Западной Европы и Северной Америки осуществлена прямая бореально-тетическая корреляция пограничных между юрой и мелом слоев Арктики и Западной Европы.
Заметное место в отмеченных работах занимало изучение изменений климата в геологическом прошлом. Смысл такого рода работ для изучения закономерностей изменений климата, а также их влияния на окружающую среду, очевиден. Экскурсы в геологическое прошлое позволяют реконструировать не только краткосрочные (высокочастотные) флуктуации, но и долгосрочные тренды климатических изменений, помогают понять механизмы влияния климата и его изменений на биосферу, включая и человека в ранние периоды его существования. При этом Арктика с её контрастами дает в этом отношении особо интересный материал.
Кроме указанных работ, было выполнено целенаправленное исследование климата середины мелового периода по ископаемым флорам с островов Котельный и Новая Сибирь в архипелаге Новосибирских островов с применением специальных методик. Оно показало (статья: А.Б. Герман и др. в разделе 4), что в Арктике в это время существовал влажный, умеренно-теплый климат с теплыми летними температурами и мягкими зимами, благоприятный для теплолюбивых растений и некоторых групп животных, включая, например, крупных динозавров.
Несколько проектов было посвящено климату и палеогеографическим реконструкциям четвертичного периода, частично объединенных в кластеры по территориальному признаку. Соответствующие статьи составляют раздел 5 «Климат и палеогеография четвертичного периода». Предметом исследований являлись: четвертичная история седиментации на хр. Ломоносова (статья: М.А. Левитан и др.); создание новой стратиграфической схемы четвертичных отложений Новосибирских островов и Яно-Индигирской низменности (статья: А.Э. Басилян, П.А. Никольский); реконструкция палеоэкологических обстановок плейстоцена – голоцена в Кольском регионе (статья: В.Я. Евзеров и др.); создание схемы корреляции событий плейстоцена-голоцена Арктики и внеарктической области (статья Ю.А. Лаврушина).
Наиболее крупное исследование из этого цикла связано с выполнением многолетнего международного проекта «Инициальное заселение Арктики человеком в условиях меняющейся природной среды» (статья А.А. Величко и др.). В проекте участвовали несколько Институтов РАН, Российской академии медицинских наук, научные организации и университеты Норвегии, Великобритании, США, Дании. В течение МПГ 2007/08 выполнен завершающий этап работ, которые позволили не только реконструировать условия обитания и пути расселения древнего населения Северной Евразии, но и выявить корреляцию импульсов заселения и рецессии (обратной миграции) с климатическими эпохами.
В следующий раздел книги (раздел 6) вынесены статьи по некоторым общим проблемам Арктики.
На фоне позднедокембрийской – раннепалеозойской истории Западной (в основном) Арктики анализируется проблема существования палеоконтинента Арктида (статья: Н.Б. Кузнецов). Это, безусловно, очень важная проблема геологии Арктики, хотя правильнее, думается, было бы употреблять не этот введенный Л.П. Зоненшайном и его соавторами термин, а первоначальное, введенное Н.С. Шатским, название – Гиперборейский континент или Гиперборейская платформа. Так, кстати, и поступают многие современные авторы, высказывающиеся, в том числе основываясь на другом материале и других соображениях (как, например, В.Я. Кабаньков и др.), в пользу существования этого тектонического элемента.
Здесь же помещена статья, посвященная характеристике геотермического поля Западно-Арктического региона и вытекающих из его анализа выводов, включая выводы прикладного характера (статья: М.Д. Хуторской и др.). В этом перечне следует упомянуть также о реализации под руководством О.В. Петрова большого международного проекта «Атлас геологических карт циркумполярной Арктики».
В заключительном разделе (раздел 7) рассматривается проблема границы зоны экономических интересов России, известная также под названием «проблемы ВГКШ» – внешней границы континентального шельфа. Её анализу был посвящен специальный проект, завершившийся разработкой (уточнением) модели строения земной коры и реконструкцией геологической истории области Центрально-Арктических поднятий (статья: В.А. Поселов и др.). На уровне имеющегося на сегодня материала представлены аргументы в подтверждение континентальной природы коры главных тектонических элементов (поднятий) этой области и, прежде всего, хр. Ломоносова и поднятия Менделеева.
Несколько слов о совещаниях. В связи с Полярным годом было проведено довольно много совещаний, конференций, даже конгрессов (как, например, несколько сессий «Северного конгресса» в Сыктывкаре и Москве). Большинство из них включало разнообразную тематику. Но описываемому здесь геолого-геофизическому направлению были специально посвящены, как минимум, два представительных совещания. Одно из них – Тектоническое совещание «Геология полярных областей Земли» (Москва, февраль 2009 г. – с более чем 300 участниками) было организовано Межведомственным тектоническим комитетом ОНЗ РАН совместно с Федеральным агентством Роснедра и МГУ. Второе – Международная конференция «Путь на север: окружающая среда и самые ранние обитатели Арктики и Субарктики» (Москва, декабрь 2008 г. – с числом участников около 100) было организовано Институтом географии РАН; А.А.Величко). Материалы того и другого совещаний опубликованы в виде сборника статей «Геология полярных областей Земли» в двух томах (2009 г.) и коллективной монографии «Путь на север: окружающая среда и самые ранние обитатели Арктики и Субарктики» (2008 г.).
И уж раз зашла речь о публикациях, то нельзя не отметить очень полезное периодическое издание – журнал «Новости МПГ», регулярные выпуски которого были налажены Межведомственным научно-координационным Комитетом. В нем оперативно печатались статьи научного и информационного характера по широкому спектру проблем МПГ 2007/08.
В завершение данного вводного обзора хотелось бы упомянуть о двух мероприятиях особого рода, имевших место в начале Полярного года.
В определенном смысле как пролог к активности МПГ 2007/08 в нашей стране можно рассматривать высокоширотную глубоководную экспедицию к Северному полюсу, организованную А.Н. Чилингаровым в июле – августе 2007 г. Экспедиция проходила на двух судах – научно-экспедиционном судне «Академик Федоров» и атомном ледоколе «Россия» с погружением на дно Северного Ледовитого океана в подводных управляемых аппаратах МИР-1 и МИР-2. Экспедиция широко освещена в литературе, прессе, других средствах массовой информации, и повторяться не имеет смысла. Но хотелось бы напомнить о том большом резонансе, который она вызвала в России и за рубежом. Она продемонстрировала возможности страны, Российской академии наук, в составе которой функционируют МИРы, привела к всплеску общественного и научного интереса к Арктике, стимулировала активность в её исследовании.
Задачи экспедиции, помимо погружения на дно океана в точке Северного Полюса, в основном были связаны с гидрографией, метеорологией, изучением ледяного покрова и т. п. Объем геологических и геофизических исследований был скромным. Тем не менее, и в этой области удалось получить некоторые важные данные. Наиболее интересный результат, уже отмеченный выше, связан с исследованием донных осадков из района подножья хр. Ломоносова вблизи Северного полюса. В них обнаружены мелкие обломки гранитов архейского возраста, источником которых, скорее всего, является хр. Ломоносова. Эти данные могут иметь критическое значение для определения типа коры в хр. Ломоносова, с чем, в свою очередь, связано обоснование границ зоны экономических интересов России.
Второе мероприятие, не столь яркое, но хронологически связанное с Полярным годом – экспедиция в Антарктиду к Полюсу недоступности, организованная шведским предпринимателем, путешественником и ученым Фредериком Паулсеном (опускавшимся на дно Ледовитого океана во время вышеупомянутой экспедиции А.Н. Чилингарова в составе экипажа глубоководного аппарата «МИР-2»). Это, не научное и к тому же, в отличие от предыдущего, не получившее широкого резонанса, событие, заслуживает упоминания по той причине, что имеет прямое отношение к одной из знаменательных вех в истории российских антарктических исследований. Экспедиция носила мемориальный характер: она была задумана в ознаменование 50-летия покорения Полюса недоступности Советской антарктической экспедицией в 1958 г. От Российской академии наук в экспедиции Ф. Паулсена участвовали В.Е. Фортов и Ю.Г. Леонов. Мемориальный поход состоялся в первой половине января 2008 года. Как и пятьдесят лет назад, он был выполнен в санно-тракторном варианте по маршруту технически более простому, но более высотному (3000 м и выше). Исходным пунктом был Южный полюс. План Ф.Паулсена был реализован, хотя из-за поломки вездехода санно-тракторный поезд с участниками экспедиции вынужден был остановиться, несколько не дойдя до Полюса недоступности, и акция была завершена с помощью авиации.
Г.Л. Лейченков[2], Ю.Б. Гусева[3], В.В. Гандюхин[4], К. Голь[5], С.В. Иванов[6], А.В. Голынский[7], А.Ю. Казанков[8]
Тектоническое развитие земной коры и формирование осадочного чехла в антарктической части Индийского океана (море Содружества, море Дейвиса, плато Кергелен)
Аннотация
В статье рассматриваются основные результаты морских геофизических исследований, выполненных по международному проекту МПГ 2007–2008 гг. в районе южной части плато Кергелен (Антарктика) в течение двух полевых сезонов 2007 и 2009 гг. (в 2007 г. работы проводились совместно с институтом Альфреда Вегенера, Германия). На основании проведенных исследований выявлены основные тектонические провинции района работ, установлена природа южной части вулканического плато Кергелен, предложены новые геодинамические модели раннего этапа раскрытия Индийского океана, выполнен детальный сейсмостратиграфический анализ осадочного чехла, выявлены обстановки осадконакопления и особенности терригенной седиментации в период антарктического оледенения.
Введение
В начале 2007 г. в антарктической части Индийского океана были выполнены совместные российско-германские геофизические исследования по проекту 3-го международного полярного года (МПГ 2007/2008 гг.) «История геодинамического развития, осадконакопления и изменений природной среды бассейна моря Содружества и южной части плато Кергелен (Восточная Антарктика)». В осуществлении проекта с российской стороны принимали участие специалисты ПМГРЭ и ВНИИОкеангеология, а со стороны немецких партнеров – ученые из Института Альфреда Вегенера (AWI) и Института геонаук и природных ресурсов Германии (BGR). Работы проводились с использованием двух научно-исследовательских судов НИС «Академик Александр Карпинский» (ПМГРЭ) и НИС «Поларштерн» (AWI). Площадь исследований охватывала акватории моря Содружества, восточной части котловины Эндерби, трога Принцессы Елизаветы и юго-западной части плато Кергелен (рис. 1).
Основными научными задачами исследований по проекту являлись: 1) изучение механизма, геометрии и продолжительности растяжения континентальной коры; 2) изучение структурных параметров, физических свойств и взаимоотношения рифтогенной континентальной, океанической и утолщенной магматической коры района плато Кергелен; 3) идентификация границы между корой континентального и океанического типов и реконструкция истории раннего спрединга морского дна Индийского океана; 4) определение природы земной коры южной части плато Кергелен; 5) реконструкция обстановок осадконакопления на континентальной окраине Антарктиды в мезозойско-кайнозойское время.
В состав совместных исследований входили: многоканальное сейсмическое профилирование методом общей глубинной точки (МОГТ), сопровождаемое измерениями гравитационного и магнитного поля, глубинные сейсмические зондирования (ГСЗ) с использованием подводных трехкомпонентных сейсмостанций (выполнялись немецкими специалистами), широкоугольное сейсмическое профилирование с одновременным использованием двух судов и аэромагнитные съемки с вертолета, размещавшегося на НИС «Поларштерн». В 2009 г. российские ученые продолжили исследования по проекту МПГ, изучив акваторию, расположенную к востоку от района совместных российско-немецких работ, которая включала юго-восточную часть плато Кергелен, море Дейвиса и глубоководную котловину Лабуан (рис. 1). Необычно суровая для антарктического лета ледовая обстановка, которая сложилась в период проведения работ в обоих полевых сезонах, не позволила выполнить геофизические наблюдения на шельфах, как это планировалось (южные окончания профилей, выполненных в 2007 и 2009 гг. фактически оконтуривают северную кромку ледяных полей; рис. 1).
Рис. 1. Схема сейсмических исследований в море Содружества, море Дейвиса и южной части плато Кергелен. 1–4 – профили ОГТ, выполненные экспедициями СССР/РФ (1), Австралии (2), Японии (3), по проекту МПГ (4); 5–7 – пункты зондирований МПВ, выполненные экспедициями: СССР/РФ (5), Австралии (6), по проекту МПГ (7); 8 – положение скважин глубоководного бурение по проектам ODP и их номера; 9 – изобаты (в метрах)
В результате исследований по проекту МПГ в сезон 2007 г. было выполнено 5000 км сейсмических, более 5500 гравитационных, 13 000 магнитных (морских и воздушных) наблюдений и произведено 39 постановок донных станций на двух меридионально ориентированных профилях МОГТ, а в сезон 2009 г. – 3000 км сейсмических, 6500 км гравитационных и 6000 магнитных наблюдений, а также 26 зондирований методом преломленных волн (МПВ) с применением радиобуев (рис. 1). Для производства работ МОГТ использовался сейсмический комплекс MSX-6000 фирмы «INPUT/OUTPUT Inc.» включающий цифровую 352-канальную приемную расстановку (косу) длиной 4500 м и две линии групповых пневмоисточников общим объемом от 20 до 38 литров.
1. Предшествующие исследования
Бассейны моря Содружества и моря Дейвиса являются частью антарктической окраины, которая сформировалась в результате распада Восточной Гондваны и разделения Индийской и Австрало-Антарктической плит в позднеюрско-раннемеловое время (Powell et al.; 1988; Lawver et al., 1992). На развитие бассейнов существенное влияние оказало внедрение в литосферу Восточной Гондваны мантийного плюма Кергелен, проявившегося в виде длительного вулканизма с образованием плато Кергелен. Прилегающая к акватории района исследований антарктическая суша входит в состав древнего кристаллического щита Восточной Антарктиды, на побережье преимущественно представленного метаморфическими комплексами пород докембрийского – раннепалеозойского возраста (Грикуров, 1980). Строение фундамента и осадочного чехла бассейнов морей Содружества и Дейвиса изучались на протяжении многих лет в Советских и Российских Антарктических экспедициях и рядом зарубежных экспедиций, однако многие аспекты тектонической (геодинамической) эволюции земной коры этого сектора Индийского океана до сих пор остаются неопределенными.
Морские геофизические исследования в районе морей Содружества и Дейвиса, которые, как правило, включали сейсмические (МОГТ), магнитные и гравитационные наблюдения, неоднократно проводились экспедициями СССР, Франции, Японии, России, Австралии (Stagg et al., 2005; Лейченков и Гусева, 2006). До начала полярного года здесь было выполнено около 39 000 км сейсмических и более 50 000 км магнитометрических профилей (рис. 1). Следует отметить, что сейсмические материалы, полученные до середины 1990-х годов (около 30 % от всех имеющихся материалов), оказались малоинформативными для тектонической интерпретации, так как не обладали необходимой глубинностью исследований.
По мере поступления геолого-геофизических данных развивались и представления о строении земной коры и ранней истории раскрытия южной части Индийского океана. В 1988 г. Пауэлл с соавторами (Powell et al., 1988), обобщив все имеющиеся на то время геолого-геофизические материалы на сопряженных окраинах материков Восточной Гондваны, сделали вывод, что рифтогенез между Индией и Антарктидой начался в позднеюрское время и закончился расколом литосферы около 132,5 млн. лет назад (хрон полярности магнитного поля М11). В последующие годы в ряде публикаций (Royer & Coffin, 1992; Gaina et al., 2007) обсуждалось только возможное положение спрединговых аномалий, в то время как возраст первичного раскрытия серьезной ревизии не подвергался.
Отечественными исследованиями в море Содружества была выявлена высокоамплитудная (350–500 нТл) линейная магнитная аномалия и высказано предположение, что она маркирует границу между рифтогенной корой континентального типа и корой океанического типа (рис. 2; Гандюхин и др., 2002). Происхождение линейной аномалии объяснялось «краевым эффектом», т. е. контактом сильномагнитной магматической коры океана с менее магнитной континентальной корой, подвергнутой интенсивному растяжению в период рифтогенеза. Позже, Стагг и др. (Stagg et al., 2005), соглашаясь с выводами российских специалистов о положении границы континент-океан в море Содружества, обнаружил, что к северу от линейной аномалии (в абиссальной котловине Эндерби) на сейсмических разрезах выделяются три толщи: тонкая верхняя с короткими полого-наклонными внутренними рефлекторами, средняя – полупрозрачная (без отражений) и нижняя, подстилаемая границей Мохоровичича, с насыщенной беспорядочными рефлекторами и дифракциями структурой сейсмической записи. Основываясь на известных представлениях о строении земной коры абиссальных котловин, они отождествили эти толщи с базальтовым (слой 2А), дайковым (слой 2В) и габбровым (слой 3) комплексами океанической коры, соответственно.
В разные годы предпринимались попытки идентификации номерных магнитных аномалий в морях Содружества и Дейвиса, но убедительные модели спрединга морского дна до сих пор отсутствовали. Это связано с низкой плотностью магнитных наблюдений в этой части Южного океана и, возможно, с особенностями спрединга морского дна вблизи вулканического плато Кергелен. Рамана и др. (Ramana et al., 2001) предположили наличие последовательности магнитных аномалий от М11 до М0 в подножии континентального склона западной части моря Содружества, однако последующие исследования эту модель не подтвердили. Гайна и др. (Gaina et al., 2007) идентифицировали в море Содружества и абиссальной котловине Эндерби (между 620 и 720в.д.) симметричную последовательность магнитных аномалий ЮВ-СЗ простирания от M9n (129,5 млн. лет) до М2 (126,7 млн. лет) и отмерший палеохребет в ее центре (в районе 61 в.д.) с возрастом около 118 млн. лет (рис. 2).
Рис. 2. Аномальное гравитационное поле (редукция в свободном воздухе; по данным спутниковой альтиметрической съемки; Sandwell & Smith, 2005) и номерные магнитные аномалии юго-восточной части Индийского океана. 1 – магнитные аномалии и их номера (Muller et al., 1997, Gaina et al., 2007), 2 – высокоамплитудная линейная магнитная аномалия моря Содружества, 3 – современный срединно-океанический хребет, 4 – оси отмершего спрединга, 5 – скважины, пробуренные по проектам ODP и IODP (приведены номера скважин, которые упоминаются в тексте). Зеленый контур – район работ по проекту МПГ.
Плато Кергелен представляет собой крупнейшую вулканическую провинцию Мирового океана. Сейсмическими исследованиями французских и австралийских экспедиций установлено, что южная часть плато Кергелен представляет собой обширное поднятие акустического фундамента, характеризующегося широким развитием разнонаправленных наклонных и пологозалегающих внутренних отражений (Rotstein et al., 1992). В 1987, 1988 и 1999 гг. на плато Кергелен по программе глубоководного бурения (ODP) пробурено 15 скважин, одна из которых (738) расположена в южной его части (рис. 2). Фундамент плато Кергелен преимущественно представлен толеитовыми базальтами, изливавшимися в субаэральных условиях около 120–110 млн. лет назад в южной части плато и 105–100 млн. лет в его центральной части и на банке Элан (Coffin et al., 2002).
По результатам геофизических и геологических исследований Коффин и др. (Coffin et al., 2002) сделали вывод, что раскрытие океана между Индией и Антарктидой могло быть вызвано внедрением горячей точки Кергелен в литосферу Восточной Гондваны 132 млн. лет назад, которое проявилось в излиянии базальтов в юго-западной Австралии (комплекс Банбери) и на плато Натуралиста (рис. 2). Около 120 млн. лет назад горячая точка сместилась в северо-западном направлении (или вновь активизировалась) и, при взаимодействии с центром спрединга Индийского океана, стимулировала обильную вулканическую деятельность, сформировавшую южную часть плато Кергелен (Coffin et al., 2002). Гайна и др. (Gaina et al., 2007) связывают с этим событием отмирание палеохребта в районе 61° в.д. и перескок океанического спрединга, который отделил блок континентальной коры от Индийской материковой окраины, представленный в настоящее время банкой Элан (рис. 2). Данные глубинного сейсмического зондирования (в районе 580ю.ш.) и геохимические исследований базальтов, вскрытых скважиной ODP 738, 747 и 750, указывают на возможное существование вещества континентального генезиса в нижней части земной коры плато Кергелен (Operto & Charvis, 1995; Coffin et al., 2002).
2. Результаты геофизических исследований по проекту МПГ
Двадцатилетний период изучения антарктической континентальной окраины, сопряженной до распада Гондваны с полуостровом Индостан, показал достаточно сложное строение ее земной коры и во многом еще не ясную историю геологического развития. Новые геофизические данные, полученные в рамках проекта МПГ, и их интеграция с предшествующими отечественными и зарубежными материалами позволяют существенно развить наши представления о ранних этапах раскрытия Индийского океана.
Сейсмические материалы зарубежных экспедиций (рис. 1) были получены из международной библиотеки сейсмических данных по Антарктике (см. сайт: http://scar-sdls.org/), а магнитные данные – из базы данных международного проекта ADMAP (Цифровая карта магнитных аномалий Антарктики, см. сайт http://earthsciences.osu.edu/admap/). Интеграция зарубежных и отечественных магнитных данных, позволила построить достаточно детальную карту аномального магнитного поля района исследований (рис. 3).
Рис. 3. Аномальное магнитное поле (ΔТ)а моря Содружества, моря Дейвиса, южной части плато Кергелен и прилегающей суши. Белой линией показана изобата 3000 м, оконтуривающая плато Кергелен
Представления о тектоническом строении района исследований и истории его развития в геологическом прошлом основаны на анализе морфологии и внутреннего строения кристаллического фундамента, а также качественной интерпретации аномальных потенциальных полей и их количественной обработки (плотностного моделирования по гравиметрическим данным и моделирования спрединга морского дна по магнитометрическим данным).
2.1.1. Строение земной коры
Поверхность кристаллического фундамента в основном уверенно идентифицируется на сейсмических разрезах, если расположена выше кратных волн от поверхности морского дна. В волновом поле она представлена акустически контрастной, рельефной, шероховатой или ровной, иногда дифрагирующей границей, которая отделяет вышележащую, хорошо стратифицированную толщу с протяженными отражающими границами от подстилающей среды с редкими нерегулярными или наклонными (как в абиссальной котловине моря Содружества и на плато Кергелен) отражениями. В подножии континентального склона моря Дейвиса кристаллический фундамент установлен менее отчетливо, так как перекрыт горизонтом осадочного чехла с высоким коэффициентом отражения, который препятствует прохождению сейсмического сигнала.
По результатам комплексной интерпретации геофизических данных составлена схема тектонического строения района исследований, на которой показаны главные тектонические подразделения, принципиально отличающиеся по структуре, физическим характеристикам и истории развития земной коры (рис. 4). К этим подразделениям относятся: докембрийский кристаллический щит Восточной Антарктиды, позднеюрско – раннемеловая система внутриконтинентального и окраинного рифтовых грабенов, раннемеловая океаническая котловина и раннемеловая вулканическая провинция Кергелен.
Докембрийский кристаллический щит фрагментарно обнажается на побережье изученной акватории и продолжается на шельф, где он погружен на глубину до 2 км и перекрыт тонким слоем осадков. Земная кора в пределах кристаллического щита практически не затронута процессами растяжения и имеет нормальную для континентов мощность 25–30 км.
Внутриконтинентальный и окраинный рифтовые грабены образуют генетически взаимосвязанную систему. Внутриконтинентальный рифтовый грабен выделен на шельфе залива Прюдс по результатам исследований прошлых лет (Leitchenkov, 1991). Границы грабена определены по резкому погружению поверхности кристаллического фундамента на сейсмических разрезах, но его внутренняя структура остается неизученной из-за интенсивных кратных волн от морского дна, которые полностью маскируют полезную запись глубже 1,5–2,0 км. По данным исследований МПВ и результатам моделирования поля силы тяжести, днище грабена расположено на глубинах 8–10 км (рис. 4), а мощность земной коры в его осевой части (вместе с осадками) составляет около 25 км. Рифтовый грабен шельфа залива Прюдс является морским продолжением крупнейшей позднемезозойской рифтовой зоны Антарктиды, которая протягивается из центральной части материка в сторону океана более чем на 1000 км (Грикуров, 1980). Сейсмические и геологические данные позволяют предполагать, что позднемезозойский внутриконтинентальный рифтовый грабен наследует более раннюю, позднепалеозойскую рифтовую зону (Leitchenkov, 1991).
Окраинный рифтовый грабен представляет собой южную часть рифта, образовавшегося между Индией и Антарктидой при растяжении литосферы и оставшейся на антарктической плите после раскрытия Индийского океана. Он расположен на внешнем шельфе, континентальном склоне и в подножии континентального склона морей Содружества и Дейвиса. Наклонная поверхность кристаллического фундамента, погружающаяся по системе крутых сбросов от 1–2 км до 6–8 км, представляет собой борт окраинного грабена (рис. 4). Днище грабена в региональном плане имеет форму прогиба и залегает на глубине 8–11 км в море Содружества и 6–9 км в море Дейвиса. Внутри грабена выявлены ассиметричные депрессии фундамента (известные в литературе как полуграбены), образование которых связано с растяжением земной коры. Мощность консолидированной части земной коры в днище рифтового грабена составляет 6–7 км, т. е. сравнима с магматической корой океана.
Рис. 4. Схема тектонического строения района моря Содружества, моря Дейвиса, южной части плато Кергелен и прилегающей суши. 1 – докембрийский кристаллический щит; 2 – позднеюрско-раннемеловые рифтовые грабены (а – борта грабенов; б – днища грабенов); штриховкой показана область внедрения мантии и продуктов ее дифференциации в континентальную кору; 3 – раннемеловая океаническая котловина; 4 – раннемеловая вулканическая провинция Кергелен (а – плато; б – окраина плато), 5 – магматические постройки; 6 – изоглубины поверхности фундамента (км); 7 – уступы в поверхности фундамента; 8 – сбросы; 9 —линейные магнитные аномалии с номерами хронов полярности геомагнитного поля; 10 – отмершие хребты. Красными линиями показано положение сейсмических разрезов, представленных на рисунках 5 и 7.
Наиболее сложной и до сих пор еще однозначно не решенной научной проблемой, возникающей при изучении пассивных континентальных окраин, является определение границы между континентальной корой, существенно утоненной в результате рифтогенеза, и океанической корой, образованной в результате магматической аккреции (спрединга) в срединных хребтах (в литературе обычно используется термин «граница континент-океан»). Особенности строения земной коры в глубоководной части бассейнов морей Содружества и Дейвиса позволяет достаточно обоснованно подойти к решению этой проблемы.
Главной такой особенностью является необычно ровная для континентальных окраин и абиссальных котловин поверхность кристаллического фундамента (причины этого феномена будут рассмотрены позже), в результате чего сейсмический сигнал не рассеивается на ней (как это происходит на рельефных границах), а проникает на большие глубины, где содержится основная информация о строении, составе и геодинамической обстановке формирования земной коры. Граница континент-океан определяется нами по резкой смене характера сейсмической записи ниже поверхности фундамента (рис. 5). К северу от этой границы разрез земной коры имеет «трехслойное» строение (см. предыдущий раздел), а к югу – приобретает внутреннюю структуру с хаотически расположенными (иногда яркими выпуклыми) рефлекторами и гиперболами дифрагированных волн (рис. 5). Как и предполагалось ранее (Гандюхин и др., 2002), граница континент-океан в море Содружества маркируется интенсивной линейной магнитной аномалией (рис. 3).
Рис. 5. Сейсмические разрезы, демонстрирующие строение земной коры в районе границы континент-океан в море Содружества (А) и море Дейвиса (Б). Положение разрезов показано на рисунке 4. Сейсмический разрез в море Содружества получен из библиотеки сейсмических данных по Антарктике (австралийская экспедиция 2001 г.; Stagg et al., 2005).
Отражающие границы внутри коры, наблюдаемые на внешней части окраинного грабена, вблизи границы континент-океан объясняются нами внедрением мантии и продуктов ее дифференциации на разные уровни земной коры. По данным исследований МПВ с донными станциями и радиобуями, последняя вниз по разрезу преломляющая граница, расположенная на 1,5–2,5 км выше Мохо в прилегающей океанической коре, имеет скорость 7,6 км/с и плотность 3,1 г/см3, соответствуя незначительно серпентинизированной (менее чем на 25 %) мантии (Dean et al., 2000; Wilson et al., 2001) или мантийным выплавкам, которые наращивают кору снизу (в зарубежной литературе этот процесс называется underplating). В верхней части консолидированной коры скорости преломленных волн составляют 6,2–6,6 км/с и могут принадлежать породам кислого/среднего состава верхней коры континентального типа или умеренно (до 50 %) серпентинизированным перидотитам верхней мантии. В пользу последнего свидетельствуют локальные линейные магнитные аномалии (рис. 3), которые могут возникать благодаря последовательному внедрению порций мантийного вещества по мере растяжения литосферы и их серпентинизации, сопровождающейся образованием магнитных минералов – магнетита и титаномагнетита (Sibuet et al., 2007). На основании полученных данных можно предположить, что, как и на многих пассивных невулканических окраинах (например, окраинах юго-западной Европы, Ньюфаундленда, Лабрадора, южной Австралии, Земли Уилкса в Антарктике; (Wilson et al., 2001, Leitchenkov et al., 2007), конечный этап рифтогенеза в море Содружества сопровождался внедрением литосферной мантии и продуктов ее дифференциации (пород основного состава) в утоненную континентальную кору.
Ширину зоны модифицированной коры (смеси древних метаморфических, метаморфизованных мантийных и магматических пород) точно определить не удается из-за кратных волн от морского дна, перекрывающих большую часть полезной записи ниже поверхности фундамента, но, вероятно, она составляет не менее 50 км в море Содружества и не менее 20 км в море Дейвиса. Контакт модифицированной коры окраинного рифтового грабена и океанической коры часто выражается ярким, прерывистым рефлектором, погружающимся в северном направлении (рис. 5).
Гладкая поверхность фундамента в пределах модифицированной коры (рис. 5) может быть представлена океаническими лавами (покровными базальтами), которые растекались на расстояние до 50 км от центра первичного спрединга в условиях еще неглубокого морского бассейна, или базальтами, излившиеся в результате внедрения и дифференциации мантийного вещества на конечной стадии растяжения окраины.
В море Содружества и море Дейвиса ширина окраинного рифтового грабена (растянутой континентальной коры) составляет 300–350 км, превышая по этому параметру большинство аналогичных структур невулканических окраин (Dean et al., 2000). В восточной части моря Содружества и западной части моря Дейвиса граница континент-океан резко смещается в южном направлении (рис. 4), но в троге Принцессы Елизаветы (между 80° в. д и 87° в.д.) ее положение остается неопределенным, так как отчетливая смена сейсмической записи внутри кристаллического фундамента здесь не наблюдается. Тем не менее, указанием на океаническую природу коры служит серия хорошо коррелируемых линейных магнитных аномалий (рис. 3, 4), самая южная из которых располагается вблизи борта окраинного грабена, ширина которого, таким образом, сокращается до 40–80 км. Такое резкое различие в строении окраины, вероятно, связано с первичной сегментацией коровых блоков на этапе рифтогенеза и их асимметричным растяжением.
Океанические котловины. Магматическая природа коры океанических котловин достаточно надежно установлена по особенностям сейсмической записи (см. предыдущий раздел), значениям скорости преломленных волн в фундаменте 5,0–5,5 км/с, типичным для второго океанического слоя, и линейному характеру магнитного поля, определяемого спредингом морского дна. Практически на всех сейсмических разрезах, пересекающих океанические котловины, на глубине около 10 с (двойное время пробега сейсмических волн), выделяется яркий непрерывный рефлектор в основании коры, который отождествляется с кровлей верхней мантии (поверхностью Мохо; рис. 5).
Ровная поверхность фундамента в котловинах, являющаяся его специфической особенностью, в целом не характерна для океанической коры, образовавшейся в условиях медленного спрединга, но часто встречается вблизи вулканических окраин и плато (Leitchenkov et al., 2008). Такая его морфология, вероятно, связана с избыточным магматизмом в срединно-океанических хребтах и увеличением мощности вулканического комплекса («слоя 2А»), сглаживающего рельеф рифтовой долины.
Мощность базальтового комплекса в море Содружества, определяемого по глубине прослеживания наклонных рефлекторов, составляет 0,8–1,3 км (что в два раза больше средних по океану), но встречаются участки, где она увеличивается до 2,0–2,5 км. По данным МПВ, нижний, третий слой океанической коры, характеризуется стандартными для него скоростями 6,9–7,0 км/с, а его мощность возрастает в северном направлении от типовых для океана 4,5–5,0 км до 6,0–7,0 км.
В океанической коре района исследований было выявлено четыре серии (последовательности) линейных магнитных аномалий, которые имеют индивидуальные особенности. Первая серия расположена между 66° в.д. и 72° в. д (рис. 6). Опорными аномалиями с характерной формой и шириной, от которых выполнялась идентификация остальной последовательности, являются здесь протяженный минимум и максимум, формировавшиеся в период хронов обратной и прямой полярности магнитного поля М3-М4 (рис. 6). Эти аномалии впервые были определены Гайной и др. (Gaina et al., 2007) вблизи отмершего палеохребта, выявленного по геофизическим данным и являющегося центром симметрии магнитного поля. Моделирование спрединга выполнялось от аномалии М2 до интенсивной линейной аномалии «краевого эффекта» (включительно), которая маркирует границу континент-океан. Установлено, что скорость полуспрединга постепенно понижается по направлению к отмершему хребту, изменяясь от 6 до 2–3 см/год (рис. 6).
Вторая серия линейных магнитных аномалий расположена между 72° в.д. и 75° в.д. (рис. 6) и заметно отличается по своему облику от первой серии, демонстрируя симметрию относительно центрального максимума. Основываясь на этой симметрии, мы предположили существование еще одного отмершего хребта в этой части океана. Модель рассчитывалась из предположения, что время начала спрединга на участках развития первой и второй серии аномалий совпадает. Центр симметрии моделируется аномалией М9n, а скорость спрединга в пределах выделенной последовательности составляет 2–4 см/год (рис. 6). Отмерший хребет практически не проявляется в структуре поверхности фундамента. Только на одном из сейсмических профилей он представлен неглубокой (300–400 м) депрессией, под которой наблюдается подъем границы Мохо. Возможно, это связано с избыточным магматизмом в период формирования океанической коры моря Содружества и общим подъемом кровли фундамента в сторону плато Кергелен за счет постспредингового разогрева литосферы, которые «замаскировали» типовую морфологию палеохребта.
Рис. 6. Модель спрединга морского дна в море Содружества – котловине Эндерби и море Дейвиса – котловине Лабуан. Параметры модели: глубина поверхности магнитоактивного слоя – 7,0 км; мощность магнитоактивного слоя – 1,0 км; намагниченность (J) – 1,7 A/м (5,7 А/м для аномалий M10Nn-M11An симметричной последовательности); наклонение (I) – -70°; склонение (D) – -65°. На врезке показано положение профилей и их номера. Для моделирования использовалась шкала инверсий геомагнитного поля Градштейна и др. 1994 г. (Gradstein et al., 1994). Аномалии неспрединговой природы показаны пунктирной линией.
Третья серия аномалий наблюдается в котловине Принцессы Елизаветы. Она характеризуется гармоничной последовательностью максимумов и минимумов шириной 10–15 км (рис. 3). Моделирование этой серии не проводилось из-за отсутствия аномалий характерной формы, которые могли бы служить ориентиром для их идентификации. Можно лишь предположить, что они представляют собой такую же симметричную последовательность, как вторая серия с центральной аномалией М9n.
Четвертая серия аномалий выявлена в море Дейвиса. Моделирование выполнялось от аномалии M11An, связываемой с началом раскрытия Индийского океана в этом районе (рис. 6). Рассчитанные скорости полуспрединга, здесь, как и в море Содружества, регулярно уменьшаются с юга на север, но имеют меньшие величины (от 4,0–5,2 до 1,9 см/год). Центральная часть линейной последовательности осложняется положительными магнитными аномалиями неспрединговой природы (рис. 6), которые связны с вытянутыми хребтами, выявленными по сейсмическим данным (рис. 4). Эти хребты располагаются под углом около 20° к простиранию спрединга морского дна и поэтому интерпретируются нами в качестве внутриплитных внедрений магматических пород, обусловленных действием плюма (горячей точки) Кергелен.
Австрало-Антарктическая котловина, юго-западная часть которой расположена в пределах площади исследований, отличается расчлененным рельефом, создаваемым крупными вытянутыми поднятиями и впадинами СЗ-ЮВ простирания (рис. 4). Образование этой котловины связано с расколом литосферы между Антарктидой и Австралией в позднемеловое время. Начальное раскрытие океана (в период от 33 до 18 хронов полярности) происходило в ультрамедленном режиме (при скоростях полуспрединга от 0,5 до 1,5 см в год (Tikku & Cande, 1999) с амагматическим спредингом и образованием в различной степени серпентинизированных перидотитовых поднятий (Лейченков и Гусева, 2006).
В пределах вулканической провинции Кергелен, кроме основного поднятия (собственно плато), нами выделена его окраина, фундамент которой залегает на более высоком гипсометрическом уровне по сравнению с окружающими океаническими котловинами и характеризуется протяженными внутренними отражениями, представляющими собой поверхности лавовых потоков (толщ). Мощность земной коры основной части плато составляет 15–18 км, а его окраины – 10–12 км. В пределах плато и его окраины обнаружены многочисленные массивные (т. е. без внутренней сейсмической расслоенности) поднятия изометричной и вытянутой формы (рис. 4), которые интерпретируются в качестве интрузивных тел и/или вулканических центров.
Природа земной коры южной части плато Кергелен до сих пор остается дискуссионной. Пока еще не ясно, имеет ли оно океаническое происхождение (как, например, Исландия или сопоставимое по размерам плат Онтонг-Ява в Тихом океане), образовавшись за счет избыточного магматизма в срединно-океанических хребтах и внутриплитного излияния базальтов, или изначально представляло собой микроконтинент с корой континентального типа, который был перекрыт вулканическими комплексами. В настоящее время достаточно убедительно доказана континентальная природа центральной части плато Кергелен (вместе с банкой Элан), расположенной между 53° и 58° ю.ш. (рис. 2). Свидетельствами этого являются: 1) геохимические особенности базальтов, изученных скважинами 747 и 750, указывающие на контаминацию мафических расплавов веществом континентальной литосферы (Storey et al., 1992); 2) обломки гранат-биотитовых гнейсов в конгломератах, вскрытых скважиной 1137 на банке Элан (Coffin et al., 2002); 3) докембрийские метаморфические породы, обнаруженные при драгировании поднятий фундамента в северной части котловины Лабуан (которая интерпретируется в качестве погруженной окраины плато Кергелен после разделения Австралийской и Антарктической плит (Montigni et al., 1993); 4) данные глубинных сейсмических зондирований в бассейне Раггатт (~58° ю.ш.), которые выявили сейсмически расслоенную толщу в нижней части земной коры с относительно низкими скоростями сейсмических волн (6,7 км/с) и анизотропию мантии, характерные для континентальной литосферы (Operto & Charvis, 1996).
Основываясь на изотопных характеристиках базальтов, вскрытых скважиной 738 (рис. 2), установлено, что они содержат континентальную компоненту (Coffin et al., 2002), т. е. континентальные блоки могут подстилать и южную часть плато Кергелен. Исследования МПВ, выполненные с помощью донных станций (рис. 1) предоставляют дополнительные свидетельства в пользу этого предположения. Годографы, полученные в южной части плато, демонстрируют смещения первых вступлений преломленных волн, которые чаще всего возникают, если в земной коре присутствует слой с пониженной скоростью (волновод; рис. 7). Предварительное моделирование сейсмических данных показывает, что наилучшее совпадение наблюденных и расчетных годографов происходит при наличии такого слоя в нижней части коры, который интерпретируется нами в качестве глубоко погруженного и перекрытого базальтами континентального блока земной коры (рис. 7).
Рис. 7. Модель строения земной коры трога Принцессы Елизаветы и южной части плато Кергелен, построенная методом лучевого трассирования с помощью программного пакета «SeisWide». Для моделирования использованы записи тринадцати донных станций и сейсмический профиль МОГТ (рис. 1). Вверху показан пример сейсмической записи и рассчитанные годографы преломленных волн (красные линии). Числа на разрезе и под рассчитанными годографами – скорости сейсмических волн (в км/с). Слой со средней скоростью 6.4 км/с в нижней части коры интерпретируется в качестве континентального блока. Положение разреза показано на рис. 4.
2.1.2. История геодинамического развития
После панафриканской активизации в позднем протерозое – раннем палеозое, материки южного полушария окончательно сложились в единый суперконтинент Гондвану, центральная часть которой представляла собой обширное поднятие докембрийского кристаллического щита, практически лишенное осадочного покрова. В тектоническом отношении эта провинция сохраняла относительно стабильное состояние до позднепалеозойского-раннемезозойского времени, когда процессы эпикратонной рифтогенной активизации (растяжения земной коры) привели к формированию внутриконтинентальных грабенов и замкнутых бассейнов. На антарктической суше, прилегающей к району работ, это событие проявилось внедрением мафических даек с возрастом около 320–310 млн. лет и образованием молассовой толщи пермо-триасового возраста, задокументированной на побережье залива Прюдс. Предполагается, что моласса накапливалась в рифтовой зоне карбонового заложения длиной более 2000 км, которая пересекала Восточную Гондвану (ортогонально структуре современной окраины) от гор Гамбурцева в центральной Антарктиде через залив Прюдс до центральной Индии (грабен Маханади). Не менее протяженный рифт возник в это же время на протоокраине западной Австралии и мог проникать в район моря Дейвиса и моря Содружества, образуя вместе с ортогонально-ориентированной ветвью разветвленную рифтовую систему.
В отличие от первой фазы деструктивного тектогенеза гондванской литосферы в позднем палеозое, которая завершилась образованием внутриконтинентальных рифтов и временной ее стабилизацией, следующая (позднемезозойско-кайнозойская) оказалась более «успешной». Она характеризуется внедрением мантийных плюмов, повторным, более значительным растяжением и разделением литосферных плит. Процесс распада Гондваны начался с рифтогенеза между Африкой и Антарктидой в ранней юре (около 170–180 млн. лет назад). В поздней юре возникла протяженная рифтовая система между Антарктидой, Австралией и Индией с тройным сочленением на стыке трех континентов. В районе моря Содружества процессы растяжения привели к формированию системы внутриконтинентального и окраинного рифтовых грабенов (рис. 8А), первый из которых представлен грабеном ледников Ламберта – Эймери – залива Прюдс (вероятно, реактивированный пермский грабен), а второй – зоной перехода от коры континентального к коре океанического типа. Финальная стадия растяжения в окраинном рифте сопровождалась подъемом мантии и внедрением продуктов ее дифференциации в верхние уровни земной коры.
Начало спрединга морского дна около 134 млн. лет назад, вероятно, было инициировано внедрением мантийного плюма (горячей точки) Кергелен под литосферу Восточной Гондваны в районе сочленения юго-западной Австралии и Антарктиды, которое маркируется излиянием базальтов Банбери в юго-западной Австралии, плато Натуралиста и окраинного вулканического плато Брюс в западной части моря Дейвиса (рис. 8Б; Лейченков и Гусева, 2006). Мы предполагаем, что избыточный магматизм в океанических хребтах, выраженный в увеличении мощности базальтового слоя океанической коры (2А) абиссальной котловины моря Содружества и окраины плато Кергелен, также связан с термальной мантийной аномалией, вызванной подъемом плюма. Влияние плюма нарастало по мере развития спрединга и привело к общему утолщению океанической коры в северной части моря Содружества, но максимальный его эффект проявился в образовании вулканической провинции южной части плато Кергелен в период между 120 и 110 млн. лет назад (Coffin et al., 2002).
Рис. 8. Реконструкции Гондваны на время 160 млн. лет (А), 134,5 млн. лет (Б), 128 млн. лет, после первого перескока оси спрединга (В), 118 млн. лет, после второго перескока оси спрединга (Г), 83 млн. лет (Д). 1 – внутриконтинентальные рифтовые грабены, 2 – срединные хребеты, 3 – палеохребты (оси палеоспрединга), 4 – отмершие хребты, 5 – область проявления базальтов Банбери. Аббревиатура: ЛЛ – ледник Ламберта; ББЭ – континентальный блок банки Элан, БЮПК – континентальный блок южной части плато Кергелен, ПН – плато Натуралиста, ББ – банка Брюс, БЭ – банка Элан, ЮПК – южная часть плато Кергелен, ХБ – хребет Броукен. Темно-серым цветом закрашены материки и острова по береговой линии (современные контуры); светло-серым цветом закрашена континентальная окраина до изобаты 2000 м.
Южная часть плато Кергелен принадлежала индийской окраине и через некоторое время после раскола литосферы была оторвана от нее за счет перескока спрединга морского дна (рис. 8В). Предполагается, что такой геодинамический режим часто возникает при внедрении мантийных плюмов и привел, например, к образованию микроконтинентов Сейшельского архипелага в Индийском океане, острова Ян-Майен в Норвежско-гренландском море и Тасманского плато – комплекса подводных гор Гилберт в Тасмановом море (Muller et al., 2001). Моделирование геодинамических процессов в срединно-океанических хребтах показывает, что перескок оси спрединга на рифтовую окраину с изоляцией микроконтинентов (фрагментов растянутой, утоненной континентальной коры) может происходить за счет понижения прочности ее литосферы, «разогретой» восходящим тепловым потоком плюма (Muller et al., 2001). Обоснованием модели, объясняющей образование микроконтинента южной части плато Кергелен, служит предположение о наличии отмершего срединно-океанического хребта с возрастом около 129 млн. лет (хрон полярности магнитного поля М9n) в котловине Эндерби между 72° и 76° в.д. (рис. 8В). Еще один перескок оси спрединга произошел около 118 млн. лет назад и отделил континентальный блок банки Элан от Индийской континентальной окраины (рис. 8 Г), присоединив его к Антарктической плите. В это же время начался интенсивный магматизм в южной части плато Кергелен. Ко времени, когда произошел раскол литосферы между Австралией и Антарктидой, с образованием Австрало-Антарктической котловины (около 83 млн. лет, Leitchenkov et al., 2007), уже сформировалась большая часть плато Кергелен (рис. 8Д).
Рифтогенез и последующее остывание литосферы привели к погружению земной коры континентальной окраины и образованию обширных осадочных бассейнов в море Содружества и море Дейвиса, которые разделены поднятием фундамента в троге Принцессы Елизаветы. На региональном уровне в этих бассейнах выделяются две области, в пределах которых существуют принципиальные различия внутренней структуры, состава и обстановок формирования осадочного чехла: одна из них занимает шельфы, а другая – глубоководную акваторию, т. е. континентальный склон, подножие континентального склона и абиссальную котловину. В период полевых работ по проекту МПГ шельфовые области изучить не удалось из-за сложной ледовой обстановки, но на этапе обобщения и интерпретации данных были использованы геолого-геофизические материалы, полученные на шельфе залива Прюдс в прошлые годы (рис. 1).
Шельф залива Прюдс впервые был исследован в 1981 г австралийской экспедицией, в результате чего в его осадочном чехле было выделено 4 главных сейсмических комплекса: PS.5, PS.4, PS.2B, PS.2A (Stagg, 1985). Дальнейшие сейсмические наблюдения, которые проводились здесь в советских и японских экспедициях, а также бурение по программе ODP (рис. 1), позволили гораздо более детально изучить строение и условия формирования осадочного чехла. В рамках проекта МПГ проведено обобщение имеющихся данных и выполнена корреляция сейсмических комплексов шельфа и в глубоководной области (рис. 9). Ниже приводится короткое описание комплексов осадочного чехла шельфа.
Комплекс PS.5 залегает в основании осадочного чехла рифтового грабена залива Прюдс (рис. 9). Он отличается высокой (4,8–5,0 км/с) скоростью сейсмических волн и достигает мощности 4,5 км. Комплекс PS.5 не был опробован бурением ODP, но по значениям скорости упругих волн, свойственным этой толще, предполагается, что он сложен молассоидными пермо-триасовыми отложениями, аналогичными осадкам оз. Бивер.
Комплекс PS.4 ограничен в кровле угловым несогласием, контрастно выраженным в сейсмической записи. В осевой части грабена мощность этого комплекса достигает 3,5 км (рис. 9). Вещественный и фациальный состав комплекса PS.4 был изучен в скважине 740, которая вскрыла около 200 м средней его части. В составе комплекса присутствуют алевролиты (в преобладающем количестве) и песчаники (красноцветы) с прослоями ископаемых почв и углей (Barron et al., 1991). Предполагается, что эти осадки в основном имеют флювиальное происхождение и накапливались в условиях теплого, сухого климата. Возраст пород из опробованной части комплекса установить не удалось (Barron et al., 1991). По нашим представлениям, комплекс PS.4 накопился в период основной фазы рифтогенеза, завершившейся разделением литосферных плит, и, таким образом, сложен позднеюрско-раннемеловыми осадками.
Комплекс PS.2B имеет покровный облик, распространяясь на большей части шельфа залива Прюдс, и перекрывает комплекс PS.4 или кристаллический фундамент в западном борту грабена (рис. 9). По данным бурения в составе комплекса PS.2B преобладают песчаники, содержащие тонкие прослои сильно сцементированных осадков, и алевролиты с остатками углифицированного растительного материала (Barron et al., 1991). Осадки вскрытой части разреза имеют раннемеловой (альбский) возраст, а их формирование происходило в условиях холодного влажного климата.
Рис. 9. Глубинный разрез через залив Прюдс и глубоководную область моря Содружества с установленными сейсмическими горизонтами и комплексами осадочного чехла (построен на основе сейсмического профиля ПМГРЭ 1987 г. в заливе Прюдс и профиля, выполненного по проекту МПГ в глубоководной акватории). Возраст комплексов осадочного чехла шельфа залива Прюдс: PS.5 – пермь-триас; PS.4 – поздняя юра – ранний мел; PS.2B – ранний мел; PS.2A – средний эоцен – квартер. Возраст горизонтов осадочного чехла глубоководной области: CS1 – ~134 млн. лет; CS2 – ~120 млн. лет; CS3 – 42–40 млн. лет; CS4 – ~34 млн. лет, CS5 – ~24 млн. лет, CS6 – 14–13 млн. лет. Положение разреза показано на врезке.
Верхний комплекс осадочного чехла шельфа PS.2A распространяется на площади от среднего шельфа до континентального склона (рис. 9). Главной отличительной чертой этого комплекса является наличие в нем проградационных (наращивающихся в сторону океана) серий (клиноформ) с отчетливой внутренней расслоенностью. Некоторые серии в направлении внутреннего шельфа выполаживаются, приобретая агградационную (т. е. наращивающуюся вверх по разрезу) слоистость с пологим залеганием отражающих границ. Комплекс PS.2A пробурен четырьмя скважинами ODP, которые охарактеризовали большую часть его разреза (рис. 1, 9). В базальной части комплекса, вскрытого скважиной 1166, обнаружены песчаники средне-, позднеэоценового возраста, отлагавшиеся во флювиальных руслах и затапливаемых приливных бассейнах или лагунах в условиях влажного, холодного климата. Остальная часть разреза имеет пост-раннеолигоценовый возраст и включают в себя массивные и стратифицированные диамиктиты ледникового и ледниково-морского генезиса (Barron et al., 1991).
Осадочный чехол глубоководной области моря Содружества и моря Дейвиса изучался многими специалистами, в результате чего появилось несколько независимых сейсмостратиграфических моделей, которые во многом отличались друг от друга по набору выделяемых горизонтов, положению в разрезе и интерпретации их природы и возраста. После проведения ПМГРЭ регулярных исследований МОГТ на континентальной окраине Восточной Антарктиды и анализа всех существующих сейсмических данных была выполнена идентификация и взаимная корреляция основных региональных несогласий на всей площади работ и создана универсальная сейсмостратиграфическая модель (Leitchenkov et al., 2007), которая усовершенствована и уточнена, благодаря исследованиям по проекту МПГ.
В универсальной стратиграфической модели, разработанной нами для глубоководной области континентальной окраины Восточной Антарктиды на основе отечественных сейсмических данных, региональные отражающие границы нумеруются вверх по разрезу цифрами от «1» до «5» и имеют буквенные коды WS, RLS, CS и WL (аббревиатуры английских названий морей или прилегающих Земель – Weddell Sea, Riiser-Larsen Sea, Cosmonaut Sea/Cooperation Sea, Wilkes Land margin; Leitchenkov et al., 2007). Для унификации модели было принято решение, что кровля рифтового структурного этажа (или, иначе говоря, несогласие, образованное в результате разновозрастного раскола Гондваны) обозначается цифрой «1», а подошва синледниковых осадков (т. е., граница, которая маркирует начало активных склоновых процессов, связываемых с крупномасштабным оледенением материка в раннем олигоцене – цифрой «4».
Основным критерием для идентификации нижнего горизонта осадочного чехла CS1, который отождествляется с поверхностью несогласия в кровле рифтового структурного этажа, является различие характера сейсмической записи в подстилающей и перекрывающей толщах (рис. 10), обусловленное изменением обстановки осадконакопления с преимущественно континентальной на морскую. Такие различия наблюдаются почти на всех разрезах, пересекающих континентальную окраину района исследований, позволяя достаточно уверенно выделять этот принципиальный раздел осадочного чехла. Сам горизонт CS1 представлен непрерывным рефлектором переменной амплитуды (рис. 10), который налегает на фундамент на расстоянии 5–50 км в сторону суши от границы континент-океан.
Рис. 10. Интерпретированный сейсмический разрез глубоководной области моря Содружества, демонстрирующий положение основных горизонтов осадочного чехла и структуру сейсмической записи ограниченных ими комплексов. Положение разреза показано на рис. 9.
Несогласие в кровле рифтового этажа выделено по сейсмическим данным на многих (хотя и не на всех) пассивных континентальных окраинах. Его образование связывается с эрозией отложений на конечной стадии рифтогенеза (перед началом спрединга морского дна) за счет термального подъема земной коры при внедрении горячей астеносферной мантии (Ziegler & Cloetingh, 2004). Таким образом, возраст горизонта CS1 приблизительно соответствует началу спрединга морского дна в море Содружества и составляет ~134 млн. лет.
Рифтовый структурный этаж заполняет региональные прогибы внутриконтинентального и окраинного рифтовых грабенов и локальные структуры растяжения (полуграбены) в кристаллическом фундаменте на шельфе и под верхним подножием континентального склона. Депоцентр рифтового структурного этажа располагается примерно посередине между внутренней границей окраинного рифтового грабена и границей континент-океан. Мощность слагающих его осадков в депоцентре составляет, в среднем, около 1 км, но напротив залива Прюдс она достигает 3,0 км.
Состав рифтового этажа предполагается по данным бурения на шельфе залива Прюдс и в Пертском бассейне (юго-западная окраина Австралии), который на этапе распада Восточной Гондваны находился в сходной тектонической, географической и климатической обстановке с бассейнами морей Содружества и Дейвиса (рис. 8А). На шельфе залива Прюдс рифтовые отложения предположительно вскрыты скважиной 740 (рис. 9), но не датированы из-за отсутствия ископаемых остатков. Согласно данным бурения, эти отложения представлены алевролитами и песчаниками (с прослоями ископаемых почв и углей), имеют флювиальное происхождение и накапливались в условиях теплого, сухого климата (Barron et al., 1991). В Пертском бассейне в составе рифтового структурного этажа доминируют песчаники континентального и мелководно-морского генезиса (Song et al., 2001). Не исключено, что в основании рифтового этажа глубоководной части бассейнов морей Содружества и Дейвиса присутствуют отложения ранней, пермо-триасовой фазы растяжения (рифтогенеза) земной коры, которые обнажаются в борту внутриконтинентальной рифтовой зоны ледников Ламберта и Эймери (Грикуров, 1980), предполагаются на шельфе залива Прюдс (Leitchenkov, 1991) и широко развиты на юго-западной окраине Австралии (Song et al., 2001).
Горизонт CS2 выделен на континентальной окраине Восточной Антарктиды от моря Рисер-Ларсена до моря Дейвиса (Leitchenkov et al., 2007). Подстилающий его сейсмический комплекс «CS2–CS1» в основном характеризуется параллельными непрерывными и прерывистыми внутренними отражениями, образующими тонкослоистую среду (рис. 10), которые характерны для морского гемипелагического осадконакопления с возможными влиянием склоновых процессов (оползней, турбидитных и обломочных потоков). Нижняя возрастная граница комплекса «CS2–CS1» определяется несогласием в кровле рифтового этажа (~134 млн. лет). Кровля комплекса (горизонт CS2) налегает на океанический фундамент в 50–150 км к северу от границы континент-океан в районе аномалии М6-М7 и, следовательно, не может быть древнее среднего валанжина (~128 млн. лет). Мы предполагаем, что образование горизонта CS2 связано со сменой режима осадконакопления, обусловленного началом интенсивного вулканизма в южной части плато Кергелен около 120 млн. лет назад. Мощность комплекса «CS2-CS1» в основном составляет 1,0–1,5 км. Максимальные ее значения (около 2 км) наблюдаются в море Содружества, в районе 76° в.д., 66° ю.ш., расположенном напротив центральной части залива Прюдс, что, вероятно, обусловлено более интенсивной поставкой терригенного материала речной системой, продолжавшей развиваться в долине внутриконтинентального рифтового грабена ледников Ламберта и Эймери. Низкое стояние уровня моря на протяжении нижнего мела (по крайне мере до апта), способствовавшее транзиту терригенных осадков через шельф, подтверждается данными пробоотбора на шельфе континентальной окраины Земли Мак-Робертсона, расположенном к западу от залива Прюдс (Truswell et al., 1999).
Горизонт CS3 прослеживается в пределах всей изученной в настоящее время индоокеанской континентальной окраины Восточной Антарктиды, представляя собой практически непрерывную отражающую границу с переменными динамическими свойствами. Комплекс «CS3-CS2» в основном представлен протяженными параллельными внутренними отражениями и по характеру сейсмической записи похож на подстилающие его комплекс «CS2-CS1» (рис. 10). Наибольшая его мощность (1,2–1,8 км) приурочена к верхнему и среднему подножию континентального склона моря Содружества. На шельфе залива Прюдс с глубоководным комплексом «CS3-CS2» отождествляется толща, в которой по данным бурения преобладают осадки флювиального генезиса (Barron et al., 1991; рис. 9) нижне– и верхнемелового возраста (альб – сантон). В кровле этой толщи выявлено стратиграфическое несогласие, означающее, что большая часть разреза была эродирована в периоды низкого стояния уровня моря.
Возраст горизонта «3» в глубоководной акватории был обоснован после проведения исследований в западной части континентальной окраины Земли Уилкса, где он налегает на океанический фундамент, датированный ранним эоценом, и маркирует заметные изменения в строении осадочного чехла, которые связываются нами с самым ранним этапом оледенения этой части антарктической окраины около 42–40 млн. лет назад (Leitchenkov et al., 2007).
Горизонт CS4 и соответствующие ему горизонты с номером «4» в других бассейнах антарктической окраины маркируют наиболее заметные преобразования структуры осадочного чехла и, как правило, представлены контрастной в сейсмической записи границей (рис. 10). Выше этой границы в разрезе появляются глубоководные каньоны и сопряженные с ними намывные прирусловые валы (боковые наносы), а также некоторые другие специфические сейсмофации (рис. 10). Принципиальные изменения в структуре осадочного чехла на региональной границе с номером «4» (CS4 в районе исследований) связываются с крупномасштабным оледенением Антарктиды около 34 млн. лет назад, когда ледовый щит достиг края шельфов, инициируя активные склоновые процессы (образование оползней, обломочных потоков и турбидитных течений (Kuvaas & Leitchenkov, 1992; Leitchenkov et al., 2007; Cooper et al., 2009). Комплексы, расположенные выше горизонта CS4, представляют собой синледниковую толщу осадочного чехла, т. е. осадочные отложения, которые на большей части изучаемой акватории формировались под влиянием осциллирующего ледникового покрова Антарктиды.
Основываясь на нашем предположении о среднеэоценовом возрасте горизонта CS3, глубоководный комплекс «CS4-CS3» отождествляется с нижней частью комплекса PS2A на шельфе залива Прюдс, который, согласно данным бурения, имеет средне-верхнеэоценовый возраст (рис. 9; Cooper & O’Brien, 2004). Осадки в это время отлагалась во флювиальных руслах и затапливаемых приливных бассейнах или лагунах в условиях влажного холодного климата (Cooper & O’Brien, 2004).
Комплекс «CS4-CS3» характеризуется параллельной слоистостью с непрерывными и прерывистыми, иногда изогнутыми внутренними отражениями, которые в большей мере типичны для гемипелагического осадконакопления. Он плавно увеличивается в мощности от первых сотен метров под верхним подножием континентального склона до 500–800 м под нижним подножием и выклинивается на поднятии плато Кергелен. В южной части моря Дейвиса под верхним подножием континентального склона были выявлены наклонные отражающие границы, которые налегают на горизонт CS3, образуя клиноформы, наращивающие разрез осадочного чехла в сторону океана (Лейченков и Гусева, 2006). Такая структура характерна для флювиальных конусов выноса и интерпретируется нами как авандельта. Максимальная скорость накопления осадочного комплекса «CS4-CS3» в нижнем подножии континентального склона составляла не более 50–60 м/млн. лет.
По результатам бурения установлено, что в течение относительно короткого времени позднего эоцена – раннего олигоцена сначала произошло падение уровня моря и эрозия шельфа (флювиально-лагунных отложений нижней части комплекса PS2A), затем трансгрессия с накоплением морских осадков и, наконец, наступление ледника на шельф, обеспечившее активную поставку осадочного материала в глубоководную область (Cooper & O’Brien, 2004). На протяжении олигоцена – среднего миоцена антарктический ледовый щит оставался нестабильным, циклично изменяясь по площади своего развития (политермальные условия; Zachos et al., 2001). В заливе Прюдс ледник периодически достигал края шельфа, осуществляя привнос терригенных осадков на континентальный склон, где происходила его дальнейшая транспортировка в направлении глубоководной котловины за счет склоновых процессов седиментации (Leitchenkov et al., 1994, Cooper & O’Brien, 2004). В периоды отступления ледника и повышения уровня моря, в подножии континентального склона, возможно, начинала преобладать гемипелагическая обстановка осадконакопления, но выделить эти события по сейсмическим данным не удается.
Начиная с позднего миоцена (около 14 млн. лет назад), когда ледовый щит Восточной Антарктиды достиг устойчивого равновесия (полярные условия), депоцентры сместились в сторону континентального склона, а в подножии континентального склона темп осадконакопления существенно (более чем в пять раз) снизился (Cooper & O’Brien, 2004). В плиоцене-плейстоцене режим седиментации на континентальной окраине резко изменился. Ледовый щит перекрывал большую часть шельфов, но оставался малоподвижным, в связи с чем поступление осадков в глубоководную область было очень незначительным. Единственным исключением являлется устье канала Прюдс, пересекающего шельф с юго-востока на северо-запад (рис. 9), вдоль которого осуществлялось активное движение выводного ледника, интенсивная поставка осадочного материала на континентальный склон и сфокусированная проградация, в результате которой бровка шельфа сместилась на 40 км в сторону океана (Leitchenkov et. al., 1994; Coper & O’Brien, 2004).
Все эти события отражаются в строении синледниковой толщи осадочного чехла («Дно-CS4»), который отличается разнообразием сейсмических фаций, с различной геометрией внутренних отражений и характерными особенностями внешней морфологии. В составе этой толщи выделен региональный горизонт CS5 и локальный горизонт CS6, которые маркируют вертикальное изменение сейсмофациальной структуры и являются важными индикаторами эволюции глубоководного бассейна. Время образования горизонта CS5 оценивается путем экстраполяции возраста осадков, вскрытых в забое скважины 1165 (~22 млн. лет; Cooper & O’Brien, 2004), расположенном на 200 м выше этого горизонта (с установленной скоростью осадконакопления в нижней части скважины около 100 м/млн. лет), и составляет ~24 млн. лет (граница олигоцена и миоцена), соответствуя оледенению Mi-1 (Zachos et al., 2001). Горизонт CS6 представляет собой контрастный рефлектор, но прослеживается только в пределах моря Содружества. Корреляция со скважиной 1165 показывает, что возраст этого горизонта составляет 13–14 млн. лет, т. е. его образование связано со стабилизацией антарктического оледенения в позднем миоцене.
Доминирующими фациями синледниковой толщи в глубоководной области района исследований являются погребенные глубоководные каньоны и сопряженные с ними прирусловые валы. Образование каньонов, их развитие и заполнение связываются с действием склоновых процессов (гравитационного массопереноса), наиболее существенными из которых, вероятно, являлись турбидитные потоки, приводившие к транспортировке осадочного материала через континентальный склон и подножие (иногда с эрозией ранее накопившихся осадков) и его переотложению. Прирусловые валы, в свою очередь, образуются при движении турбидитных (суспензионных) потоков вдоль подводных каньонов и осаждении тонкодисперсного материала на их краях, где скорость течений резко снижается (Faugerеs et al., 1999). В море Содружества подводные каньоны (погребенные и современные) прослеживаются до абиссальной котловины, так что общая их протяженность составляет более 500 км, а в троге Принцессы Елизаветы вырождаются в верхнем и среднем подножии склона (рис. 11). В море Дейвиса каньоны ранней генерации, сформировавшиеся в олигоцене, по своей протяженности были значительно (по меньшей мере, вдвое) короче тех, которые унаследовали их в миоцене и в более позднее (в том числе настоящее) время (рис. 11). Еще одним проявлением склоновых процессов являются оползни и обломочные потоки, образование которых связано с дестабилизацией континентального склона (в результате накопления избыточной массы терригенного материала, привнесенного ледниковым покровом на край шельфа) и дальнейшей транспортировкой осадков в глубоководную область. На сейсмических разрезах они выделяются в виде линз с хаотическими внутренними отражениями.
Рис. 11. Схема распространения осадочных фаций в синледниковой толще осадочного чехла. 1 – авандельта, 2 – поля развития иловых волн в постолигоценовых осадках, 3 – отложения обломочных потоков, 4 – современные подводные каньоны. Стрелками показано направление стока холодных вод и контурных течений.
В верхней (постолигоценовой) части синледниковой толщи, выше горизонта CS5, выявлены сейсмические фации с волнистой структурой отражений, генезис которых хорошо изучен на многих континентальных окраинах мира и в других районах Антарктики (Faugeres et al., 1999). Они обнаружены в погребенных прирусловых валах моря Содружества, вдоль подножия континентального склона северо-восточной части моря Дейвиса, в южной части котловины Лабуан и вдоль восточной окраины плато Кергелен, образуя изометричные и/или вытянутые в плане поля (рис. 11). Фации с волнистой структурой отражений представлены глинистыми осадками и в иностранной литературе получили название «иловые волны» («mud waves»; Faugeres et al., 1999), а их образование связывается с действием контурных и/или склоновых течений. Склоновые течения, в свою очередь обусловлены стоком холодных и плотных вод из-под шельфовых ледников Восточной Антарктиды. В море Содружества иловые волны образуют толщу мощностью до 1 км, указывая на длительное и устойчивое действие донных течений. Основание этой толщи расположено на более высоком стратиграфическом уровне, чем горизонт CS5, но не является отчетливым и хорошо коррелируемым отражающим горизонтом. По данным бурения в скважине 1165 иловые волны в море Содружества, образование которых связывается с подледным стоком холодных вод, начали развиваться около 18 млн. лет.
Плиоцен-плейстоценовое оледенение шельфа маркируется контрастным отражающим горизонтом в основании проградационной толщи (конуса выноса) устья канала Прюдс, которая резко утоняется в сторону океан (рис. 9, 10). Слой осадочных отложений этого возраста, вероятно, присутствует в самой верхней части осадочного чехла района исследований (рис. 10).
Мощность синледниковой толщи значительно изменяется в пределах района исследований. В подножии континентального склона моря Дейвиса и в троге Принцессы Елизаветы она составляет в среднем 1,0–1,3 км, но в море Содружества (между 660 и 720 в.д.) увеличивается до 2,2–2,8 км, что связано с активным выносом терригенных осадков выводным ледником (палеоледником) Ламберта (уместно сказать, что это самые большие значения мощности постэоценовых синледниковых осадков на континентальной окраине Восточной Антарктиды). Суммарная мощность осадочного чехла района исследований по проекту МПГ составляет от 5,0 до 9,0 км в подножии континентального склона моря Содружества; 2,5–4,5 км в троге Принцессы Елизаветы и 0,5–2,5 км на поднятиях фундамента шельфа, в глубоководной котловине северной части моря Содружества и на подводном плато Кергелен.
Заключение
По результатам интерпретации геофизических данных составлена схема тектонического строения района исследований, на которой показаны вещественные комплексы фундамента в пределах основных тектонических (коровых) провинций и некоторые их структурные элементы. К главным тектоническим провинциям, установленным в районе работ, относятся: докембрийский кристаллический щит Восточной Антарктиды, позднеюрско – раннемеловая система внутриконтинентального и окраинного рифтовых грабенов, раннемеловая океаническая котловина и раннемеловая вулканическая провинция плато Кергелен.
Раскол литосферы в море Содружества произошел около 134 млн. лет назад. Это событие совпадает с (и возможно обусловлено) внедрением мантийного плюма Кергелен под литосферу Восточной Гондваны в районе сочленения юго-западной Австралии и Антарктиды. Избыточный магматизм в палеохребтах выражен в увеличении мощности базальтового слоя океанической коры, окружающей южную часть плато Кергелен. Предполагается, что южная часть плато Кергелен подстилается растянутыми и утоненными блоками континентальной коры, которые принадлежали индийской окраине и через некоторое время после раскола литосферы были оторваны от нее за счет перескока спрединга морского дна около 129 млн. лет назад.
В осадочном чехле глубоководной части континентальной окраины выделено 5 региональных сейсмических горизонтов: CS1, CS2, CS3, CS4 и CS5, возраст которых составляет ~134, ~120; 42–40, ~34 и ~24 млн. лет, соответственно. Горизонт CS4 отделяет относительно однородную по своему строению нижележащую толщу от гетерогенной перекрывающей толщи, которая отличается разнообразием сейсмических фаций с различной геометрией внутренних отражений и характерными особенностями внешней морфологии. Изменения структуры осадочного чехла на границе CS4 связывается с началом крупномасштабного антарктического оледенения.
Успешная реализация экспедиционной части проекта третьего Международного полярного года в районе южной части плато Кергелен позволила получить важные научные результаты, которые существенно расширяют наши знания о ранней истории развития Индийского океана и особенностях осадконакопления в позднем кайнозое. Высокая результативность исследований связана с объединением финансовых, технических и интеллектуальных ресурсов нескольких организаций двух стран для решения фундаментальных научных задач. Опыт объединения усилий, полученный благодаря инициативе проведения 3-го МПГ, показывает, что это наиболее эффективный путь изучения антарктической литосферы.
Литература
Грикуров Г.Э. 1980. Объяснительная записка к тектонической карте Антарктиды масштаба 1:10 000 000. Ленинград. НИИГА.
Гандюхин В.В., Гусева Ю.Б., Кудрявцев Г.А., Иванов С.В., Лейченков Г.Л. 2002. Строение и история геологического развития осадочного бассейна моря Космонавтов (Антарктика, южная часть Индийского океана). Разведка и Охрана Недр. № 9, с. 27–31.
Лейченков Г.Л., Гусева Ю.Б. 2006. Строение и история развития земной коры осадочного бассейна моря Дейвиса, Восточная Антарктика. В сб.: Научные результаты геолого-геофизических исследований в Антарктике. Ред. Лейченков Г.Л., Лайба А.А. Вып. 1. СПб: ВНИИОкеангеология, с. 101–115.
Barron J., Larson B. et al. 1991. Proceedings of the Ocean Drilling Program scientific results. 119 Ocean Drilling Program. College Station. TX, 1003 p.
Coffin M.F., Pringle M.S., Duncan R.A., Gladczenko T.P., Storey M., Muller R.D., Gahagan L.A. 2002. Kerguelen Hotspot magma output since 130 Ma. Journ. Petrology. Vol 43, № 7, pp. 1121–1139.
Cooper A.K., O’Brien P.E. 2004. Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. In: Cooper A.K., O’Brien P.E., Richter C. (Eds.). Proc. ODP, Sci. Results. № 188, pp. 1–42.
Сooper A.K., Brancolini G., Escutia C., Kristoffersen Y., Larter R., Leitchenkov G., O’Brien P., Jokat W. 2009. Cenozoic climate history from seismic-reflection and drilling studies on the Antarctic continental margin. In: Florindo F. and Siegert M. (Eds.). Antarctic Climate Evolution. Developments in Earth & Environmental Science. Vol. 8, Elsevier, pp. 115–228.
Dean S.M., Minshull N.A., Whitmarsh R.B., Louden K.T. 2000. Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: the IAM-9 transect at 40°20 / N. Journ. Geoph. Res. Vol. 105, pp. 5859–5855.
Faugeres J.-C., Stow D.A.V., Imbert P., Viana A.R., Wynn R.B. 1999. Seismic features diagnostic of contourite drifts. Marine Geology. Vol. 162, pp. 1–38.
Gaina C., Muller R.D., Brown B., Ishihara T. and Ivanov S. 2007. Breakup and early seafloor spreading between India and Antarctica. Antarctica. Geophys. J. Int. Vol. 170, pp. 151–169.
Gradstein F.M., Agterberg F.P., Ogg J.G., Hardenbol J., van Veen P.,Thierry J., Huang, Z., 1994. A Mesozoic timescale, Journ. Geop. Res.Vol. 99, pp. 24051–24074.
Kuvaas B., Leitchenkov G. 1992. Glaciomarine turbidite and current controlled deposits in Prydz Bay. Antarctica. Marine Geology. Vol. 108, pp. 365–381.
Leitchenkov G.L. 1991. Structure and evolution of the Prydz Bay. In: Abstracts of Sixth International Symposium on Antarctic Earth Sciences. National Inst. Polar Res., Japan, pp. 346–351.
Leitchenkov G., Stagg H., Gandjukhin V., Cooper A.K., Tanahashi M., O’Brien P. 1994. Cenozoic seismic stratigraphy of Prydz Bay (Antractica). In Cooper A.K., Barker P.F., Webb P.N., Brankolini G. (Eds), The Antarctic continental margin: geophysical and geological stratigraphic records of Cenozoic glaciation, Paleoenvironments and sea-level change, Terra Antarctica. Vol. 1, N 2, pp. 395–397.
Leitchenkov G.L., Gandyukhin V.V., Guseva Y.B. 2007. Crustal structure and evolution of the Mawson Sea, western Wilkes Land margin, East Antarctica. In: Cooper A. K., Raymond C. R. et al. Antarctica: A Keystone in a Changing World – Proceedings of the 10th ISAES, USGS Open-File Report 2007–1047, Short Research Paper 028. 2007. doi:10.3133/of2007-1047.srp 028.
Leitchenkov G., Guseva J., Gandyukhin V., Grikurov G., Kristoffersen Y., Sand M., Golynsky A., Aleshkova N. 2008. Crustal structure and tectonic provinces of the Riiser-Larsen Sea area (East Antarctica): results of geophysical studies. Mar. Geoph. Res. Vol. 29, pp. 135–158.
Muller R. D., Roest W. R., Royer J-Y., Gahagan L. M., Sclater J. G. 1997 Digital isochrons of the World’s ocean floor. Journ. Geoph, Res. Vol. 102 (B2), pp. 3211–3214.
Muller R.D., Gaina C., Roest W.R., Lundbek D. 2001. A recipe for microcontinent formation. Geology. Vol. 29. № 3, pp. 203–206.
Montigny R., Karpoff A.-M., Hofmann C. 1993. Resultats d’un dragage par 55°18’S-83°04’E dans le Bassin de Labuan (campagne MD 67, ocean Indien meridional): implications geodynamiques, Geosciences Marines, Soc., geol. France, 83.
Operto S., Charvis P. 1996. Deep structure of the southern Kerguelen Plateau (southern Indian Ocean) from ocean bottom seismometer wide-angle seismic data, Journ. Geoph. Res. Vol. 101, pp. 25077–25103.
Powell C.A., Roots S.R., Veevers J.J. 1988. Pre-breakup continental extension in East Gondwanaland and early opening of the eastern Indian Ocean. Tectonophysics. № 155, pp. 261–283.
Ramana M.V., Ramprasad T., Desa M. 2001. Seafloor spreading magnetic anomalies in the Enderby Basin, East Antarctica. Earth and Plan. Sci. Lett. Vol. 191, pp. 241–255.
Rotstein Y., Schlich R., Munschy M., Coffin M. 1992. Structure and tectonic history of the Southern Kerguelen Plateau (Indian Ocean) deduced from seismic reflection data. Tectonics. Vol. 11, № 6, pp. 1332–1347.
Royer J.-Y., Coffin M.F. 1992. Jurassic to Eocene plate tectonic reconstructions in the Kerguelen Plateau region. In: Wise J.S.W., Julson A.P., Schlich R., Thomas E. (Eds.). Proceedings of the Ocean Drilling Program, scientific results, 120, Texas A&M University, College Station, TX, pp. 917–930.
Sandwell D., Smith W.H.F. 2005. Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. Geoph. J. Int. Vol. 163, pp. 79–89.
Sibuet J-C., Srivastava S., Manatschal G. 2007. Exhumed mantle-forming transitional crust in the Newfoundland-Iberia rift and associated magnetic anomalies. Journ. Geoph. Res. Vol. 112, B06105, DOI:10.1029/2005JB003856.
Song T., Cawood P.A., Middleton M. 2001. Transfer zones normal and oblique to rift trend: example from the Perth Basin, Western Australia. In: Wilson R.C.L., Whitmarsh R.B., Taylor B., Froitzheim N. (Eds.). Non-Volcanic rifting of continental margins: a composition of evidence from land and sea. Geological Society. London. Special Publication. № 187, pp. 475–488.
Stagg H.M.J. 1985. The structure and origin of Prydz Bay and Mac.Robertson shelf. East Antarctica. Tectonophysics. Vol. 114, pp. 315–340.
Stagg H.M.J., Colwell J.B., Direen N.G., O’Brien P.E., Bernardel G., Borissova I., Brown B.J., Ishirara T. 2005. Geology of the continental margin of Enderby and Mac Robertson Lands, East Antarctica: insights from a regional data set. Marine Geoph. Res. Vol. 25, pp. 183–219.
Storey M., Kent R.W., Saunders A.D., Salters V.J., Hergt J., Whitechurch H., Sevigny J.H., Thirlwall M.F., Leat P., Ghose N.C. and Gifford M. 1992. Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau. In Wise, S.W., Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Station, TX (Ocean Drilling Program), pp. 33–53.
Tikku A.A., Cande S.C. 1999. The oldest magnetic anomalies in the Australian-Antarctic Basin: are they isochrons? Journ. Geoph. Res. Vol. 104, pp. 661–677.
Truswell E.M., Dettmann M.E., O’Brien P.E., 1999. Mesozoic palynofloras from the Mac.Robertson Shelf, East Antarctica: geological and phytogeographic implications. Antarct. Sci. Vol. 11, pp. 239–255
Wilson R.C.L., Whitmarsh R.B., Taylor B., Froitzheim N. (Eds.). 2001. Non Volcanic rifting of continental margins: a composition of evidence from land and sea. Geological Society. London. Special Publication. № 187, 585 p.
Ziegler P.A., Cloetingh S. 2004. Dynamic processes controlling evolution of rifted basins. Earth-Science Reviews. Vol 1, pp. 1–50.
Leitchenkov G.L.[9], Guseva Yu.B.[10], Gandyukhin V.V.[11], Gohl K.[12], Ivanov S.V.[13], Golynsky A.V.[14], Kazankov A.Ju.[15] Crustal tectonics and depositional history in the Southern Indian Ocean (East Antarctica: Cooperation Sea, Davis Sea, Kerguelen Plateau)
Abstract
This paper outlines major results of marine geophysical surveys conducted in the framework of the IPY 20072008 Project in the area of southern Kerguelen Plateau during 2007 and 2009 austral seasons (in 2007, geophysical data were acquired jointly with Alfred Wegener Institute, Germany). Conducted studies enabled us to define crustal structure and characteristics of this region, to map principal tectonic provinces and features, to develop a seismic stratigraphy model, and to define depositional settings and environmental changes during Late Mesozoic – Cenozoic time.
С.В. Попов[16], Г.Л. Лейченков[17], В.Н. Масолов[18], В.М. Котляков[19], М.Ю. Москалевский[20]
Мощность ледникового покрова и подлёдный рельеф Восточной Антарктиды (результаты исследований по проекту МПГ)
Аннотация
В статье представлены результаты исследований по проекту МПГ 2007–2008 ABRIS (исследование коренного рельефа и мощности ледникового щита Антарктиды), в рамках которого создана база данных мощности льда Восточной Антарктиды и составлены карты подлёдного рельефа и мощности ледникового покрова. Основным источником информации для построения карт являлись материалы отечественных радиолокационных исследований, выполненных с 1966 по 2008 гг., и зарубежных экспедиций, полученных из международной базы данных переданных организациями исполнителями работ.
Введение
В октябре 1996 г. в г. Кембридже (Великобритания) по инициативе рабочей группы по геофизике Научного комитета по исследованиям в Антарктике (SCAR) состоялось рабочее совещание, посвящённое оценке состояния изученности ледникового покрова и коренного рельефа Антарктиды и созданию нового международного проекта «Топография коренного ложа Антарктики» (BEDMAP). В ходе совещания были определены цели и задачи нового проекта, а также методические подходы для успешной его реализации (BEDMAP, 1996). Работу по сбору материала, созданию объединенной базы данных и составлению карт возглавили специалисты Британской антарктической службы (BAS).
В ходе выполнения проекта BEDMAP была сформирована база данных, содержащая 1 931 437 пунктов измерений мощности ледникового покрова по 127 объектам геофизических работ, выполненных в Антарктиде в период с 1950-х до середины 1990-х годов (BEDMAP, 1999). Основную их часть (99.64 %) составляют материалы радиолокационного профилирования (РЛП). После обработки всех полученных данных были сформированы гриды мощности ледникового покрова и коренного рельефа и на их основе создана и опубликована карта коренного рельефа Антарктики масштаба 1: 10 000 000 (Lythe et al., 2000). Важным достижением проекта BEDMAP является создание единой базы данных по мощности льда (включает в себя дискретные значения по радиолокационным профилям и одиночным сейсмическим зондированиям, выполненным до 1995 г.), формирование на её основе математических моделей (гридов) мощности ледникового покрова и коренного рельефа и составление соответствующих мелкомасштабных карт, которые послужили основой для решения многих научных задач в области геологии, гляциологии, моделирования изменений климата и др. Необходимо, однако, отметить, что результирующие карты отражают лишь самые общие (региональные) черты строения ледниковой толщи и подледной поверхности, так как все полученные материалы были осреднены путём создания равномерного (независимо от масштаба выполненных съёмок) цифрового грида.
В рамках инициативы третьего Международного полярного года (МПГ 2007–2008) специалистами ПМГРЭ, ВНИИОкеангеология и ИГРАН был предложен проект ABRIS (Antarctic Bedrock Relief and Ice Sheet – Коренной рельеф и ледовый щит Антарктиды), основная цель которого состояла в создании собственной базы данных мощности ледникового покрова и подлёдной топографии Антарктиды и составлении обобщающих и региональных карт с детальностью, максимально соответствующей масштабам съёмок. Главным объектом исследований по проекту ABRIS является Восточная Антарктида в секторе между 20°в.д. и 160°в.д. (рис. 1). Для успешной реализации проекта и подготовки качественной картографической продукции сначала выполнялась обработка, взаимная увязка и обобщение разномасштабных отечественных данных, значительная часть которых была получена в аналоговой форме и потребовала оцифровки. Кроме того, для составления карт были использованы материалы зарубежных исследований, открытые для международного сообщества. Проект ABRIS был зарегистрирован в международном офисе МПГ, одобрен национальным комитетом МПГ и внесён в перечень предложений в научную программу участия Российской Федерации в проведении международного полярного года.
Рис. 1 Схема радиолокационных и сейсмических исследований, использованных для составления карт мощности ледникового покрова и подлёдного рельефа Восточной Антарктиды. 1–3: данные отечественных исследований. 1 – пункты сейсмических зондирований МОВ; 2 – площади аэрогеофизических съёмок масштаба 1: 500 000; 3 – аэрорадиолокационные и наземные маршруты; 4–5: данные зарубежных исследований, полученные из база данных проекта BEDMAP. – пункты сейсмических зондирований МОВ; 5 – аэрорадиолокационные маршруты. 6–7 – данные зарубежных исследований, преданные в проект ABRIS организациям исполнителями. 6 – аэрорадиолокационные маршруты; 7 – площади аэрогеофизических съёмок масштаба 1: 700 000; 8 – береговая линия (линия налегания шельфовых ледников) по данным цифровой базы данных по Антарктике (Antarctic Digital database, 1998) и данным ПМГРЭ для озера Восток (Попов и др., 2007б); 9 – горные выходы по данным цифровой базы данных по Антарктике (Antarctic Digital database, 1998); 10 – изогипсы высот дневной поверхности; сечение изолиний 200 м. Географические объекты: 1 – шельфовый ледник Эймери; 2 – Купол Аргус; 3 – Купол Конкордия; 4 – Купол Фуджи; 5 – Земля Королевы Мод; 6 – Земля Эндерби; 7 – горы Принс-Чарльз; 8 – ледораздел B; 9 – шельфовый ледник Росса; 10 – Трансантарктические горы; 11 – Купол Титан; 12 – подледниковое озеро Восток; 13 – Земля Уилкса.
1. Радиолокационные и сейсмические исследования
Исследования мощности ледникового покрова Антарктиды проводятся в трех модификациях: точечные сейсмические зондирования методом отражённых волн (МОВ), наземное радиолокационное профилирование и аэрорадиолокационные съемки. Отечественные исследования МОВ стали проводиться с 1958 г. в научных санно-гусеничных походах (Капица, 1960, рис. 1). В период с 1971 по 1975 гг. были выполнены площадные работы МОВ на Земле Эндерби и в районе шельфового ледника Эймери, а с 1995 по 2008 гг. в пределах подледникового озера Восток (Попов и Поздеев, 2002; Попов и др., 2007, рис. 1). Первая аэрорадиолокационная съемка проведена в 14-ой Советской антарктической экспедиции (САЭ) в 1967 г. с использованием самолета Ил-14 и ледового локатора частотой 213 МГц (Козлов и Федоров, 1968). Регулярные аэрогеофизические исследования, в составе которых были и радиолокационные наблюдения, начались в 1985 г. и продолжаются до настоящего времени. В 1987–91 гг. (33–36 САЭ) в центральной части Восточной Антарктиды были выполнены комплексные аэрогеофизические исследования с борта самолёта Ил-18Д, которые закрыли значительную площадь от побережья Земли Эндерби до гор Гамбурцева (рис. 1). Для производств радиолокационных наблюдений применялись ледовые локаторы МПИб0 и ЛЛ5000 с частотой зондирующих импульсов 60 МГц (Попов и др., 2006). Плановая привязка обеспечивалась доплеровским оборудованием, радиогеодезической системой дальней навигации и спутниковой системой плановой привязки. Точность привязки составляла от 150 м до 100 м. В 1971–74 гг., 1986 и 1988 гг. (17–19, 31, 33 САЭ) аэрорадиолокационные съемки с локатором МПИ-60 выполнялись в восточной части Земли Королевы Мод и на Земле Эндерби. В качестве носителя использовались самолёты Ил-14 (Куринин и Алешкова, 1987). С 1985 г. начались планомерные аэрогеофизические исследования масштаба 1: 500 000 в районе ледников Ламберт-Эймери (Попов и Поздеев, 2001; Попов и др., 2006).
В период 1998–2009 гг. в районе подледникового озера Восток и на трассах следования санно-гусеничных походов между станциями Мирный-Восток и Прогресс-Восток выполнялось наземное радиолокационное профилирование (рис. 1). В работах использовался ледовый локатор РЛС-60-98 с частотой зондирующих импульсов 60 МГц. Плановая привязка осуществлялась с помощью глобальной системы позиционирования (GPS; Попов и др., 2007).
При составлении карт были использованы также материалы зарубежных экспедиций, полученные из базы данных проекта BEDMAP (рис. 1). К ним относятся: (1) данные наземных сейсмических исследований США, выполненные в 1960-х; плановая привязка пунктов наблюдения осуществлялась астрономическим способом (Crary, 1962; Beitzel, 1971); (2) материалы совместных аэрогеофизических исследований США, Великобритании и Дании, выполненных в течение летних полевых сезонов 1971/72, 1974/75 и 1978 гг. на Земле Виктории и в центральной части Восточной Антарктиды; работы выполнялись на базе самолёта C-130 с использованием ледового локатора частотой 60 МГц; точность плановой привязки составила около 3 км (Drewry & Meldrum, 1978); (3) материалы японских наземных радиолокационных исследований, выполненных в районе купола Фуджи 1992–94 гг.; применялся ледовый локатор с частотой зондирующих импульсов 60 МГц; плановая привязка обеспечивалась (BEDMAP, 1999). В 2001 и 2004 гг. экспедициями США (Studinger et al., 2003) и Германии (McLean et al. 2004) были проведены комплексные аэрогеофизические съёмки с использованием радиолокационного профилирования в районе подледникового озера Восток и к югу от гор Принс-Чарльз. Материалы этих исследований переданы в проект ABRIS и использованы при построении карт.
2. Результаты исследований по проекту ABRIS
По результатам исследований в рамках проекта МПГ ABRIS составлены карты мощности ледникового покрова и подлёдного рельефа, которые формировались посредством гридирования всего объёма данных методом Inverse Distance с размером ячеек грида 5х5 км и радиусом осреднения 80 км. Методика гридирования обоснована и достаточно подробно изложена в работе (Попов и др., 2007). Подлёдный рельеф строился путем вычитания мощности ледника из дневной поверхности. На начальном этапе работ по проекту ABRIS использовалась модель дневной поверхности, сформированная в рамках проекта GTOPO30, доступная по адресу в интернете http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html. В его основу были положены материалы спутниковых съемок ERS-1 (Gesch & Larson, 1996). При всех достоинствах модели она недостаточно точно описывает поле высот дневной поверхности шельфовых ледников и присклоновой части антарктического ледника, поэтому для расчёта модели коренного рельефа, сформированной в рамках проекта ABRIS, использовалась дневная поверхность проекта RAMP2 (Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2), сформированная, главным образом, на основе материалов спутника ERS-1 и ERS-2. Данные доступны по адресу в интернет http://nsidc.org/data/docs/daac/nsidc0082_ramp_dem_v2.gd.html (Liu. et al., 2001)
Мощность ледникового покрова изученной части Восточной Антарктиды изменяется от первых до более чем 4000 метров. Наименьшие значения приурочены к горным выходам и районам подлёдных гор; наибольшие соответствуют отрицательным формам рельефа: впадинам и желобам. В генеральном плане мощность ледника контролируется подлёдным ландшафтом и нарастает от периферии к центру (рис. 2). Здесь выявлено пять горных областей. Самой западной из них являются горы Вернадского (рис. 3), которые протягиваются от побережья вглубь материка боле чем на 1000 км. На территории проведённых исследований для неё характерны высоты от 1000 до 1400 м, при относительных высотах 500–700 м. Для этой горной системы характерны преимущественно субмеридианальные простирания слагающих её форм рельефа.
Рис. 2 Мощность ледникового покрова Восточной Антарктиды (сечение изолиний 200 м)
К востоку от гор Вернадского, на Земле Эндерби, располагаются горы Серлапова, имеющие меридианальное простирание (рис. 3). Размеры этой горной области составляют около 1000–400 км. От гор Вернадского они отделяются обширной депрессией шириной около 100 км. В целом морфометрические параметры обоих горных систем сходны как по абсолютным, так и по относительным высотам. Восточные отроги гор Серлапова, непосредственно примыкающие к западному борту рифтовой долины Ламберта, сопрягаются с горами Принс-Чарльз, значительная часть которых обнажается на дневной поверхности (рис. 3).
Рис. 3. Подлёдный рельеф Восточной Антарктиды (сечение изолиний 200 м). Географические объекты: 1 – шельфовый ледник Эймери; 2 – подлёдный бассейн Аврора; 3 – желоб Адвенчер; 4 – возвышенность Бельжика; 5 – подлёдные горы Гамбурцева; 6 – подлёдные горы Комсомольские; 7 – горы Принс-Чарльз; 8 – горы Полюса недоступности; 9 – подлёдный бассейн Полярный; 10 – подлёдный желоб Пикок; 11 – шельфовый ледник Росса; 12 – возвышенность Резольюшан; 13 – равнина Шмидта; 14 – подлёдные горы Серлапова; 15 – Трансантарктические горы; 16 – котловина Винсенс; 17 – Восточная равнина; 18 – подледниковое озеро Восток; 19 – подлёдные горы Вернадского; 20 – котловина Уилкса.
В центральной части Восточной Антарктиды располагаются две отдельные горные системы: горы Гамбурцева и горы Полюса Недоступности (рис. 3). Их границы выходят за рамки построений. Горы Гамбурцева имеют значительные размеры, охватывающие площадь более чем 700 000 км2 и имеют относительные высоты более 3 км. Привершинная часть гор Гамбурцева располагается на абсолютных высотах около 2000 м. С востока к ним примыкают горы Комсомольские, протяжённость которых с севера на юг, по всей видимости, составляет около 1000 км, при ширине около 300 км. Их отроги выходят к западному берегу подледникового озера Восток. Для гор Комсомольских характерны высотные отметки до 1200 м.
Территория, расположенная к востоку от гор Комсомольских и котловины озера Восток преимущественно представляет собой низменности и невысокие холмистые гряды (рис. 3) с высотами от 1500 до 500–800 м (подлёдные бассейны Полярный, Уилкса, Винсенс; желоба Адвенче и Пикок). Их днища располагаются на высоте около 750 м. На рис. 4 приводится роза-диаграмма простирания элементов подлёдного рельефа, которая отчетливо демонстрирует преобладание меридиональных и северо-восточных простираний структур коренного ложа Восточной Антарктиды.
Рис. 4. Роза-диаграмма простирания подлёдных структур
Благодарности
Работа выполнялась при финансовой поддержке Российского фонда фундаментальных исследований (грант РФФИ № 07-05-00401), подпрограммы «Изучение и исследование Антарктики», ФЦП «Мировой океан» (проекты 2 и 3) и Программы Президиума РАН 16, часть 2 (проект 3.3).
Литература
Капица А.П. 1960. Новые данные о мощности ледникового покрова центральных районов Антарктиды. Бюлл. САЭ, т. 19, c. 10–15.
Козлов А.И., Федоров Б.А. 1968. Радиолокационное зондирование антарктических ледников летом 1967/68 г. Бюлл. САЭ. вып. 71, c. 53–57.
Куринин Р.Г., Алешкова Н.Д. 1987. Коренной рельеф Земли Эндерби, Земли Мак-Робертсона и Земли принцессы Елизаветы в Восточной Антарктиде. Антарктика. вып. 26, c. 62–65.
Попов С.В., Масолов В.Н., Волнухин В.С. 2006. 40 лет отечественным радиолокационным исследованиям в Антарктиде. Программа и тезисы докладов на научной конференции «Россия в Антарктике», 12–14 апреля 2006 г., г. С. Петербург, с. 189.
Попов С.В., Масолов В.Н., Лукин В.В., Попков А.М. 2007а. Отечественные сейсмические+ и наземные радиолокационные исследования в Центральной Антарктиде накануне Международного полярного года 2007–2008. МГИ. вып. 103, с 107–117.
Попов С.В., Поздеев В.С. 2002. Ледниковый покров и коренной рельеф района гор Принс-Чарльз (Восточная Антарктида). МГИ. вып. 93, с. 205–214.
Попов С.В., Харитонов В.В., Масолов В.Н., Лейченков Г.Л., Котляков В.М., Москалевский М.Ю. 2007. Проект ABRIS: ледниковый покров и коренной рельеф района куполов Аргус, Конкордия, Титан и Фуджи (Восточная Антарктида). МГИ. вып. 103, с. 75–86.
Antarctic Digital Database (ADD). 1998. Version 2.0. Manual and bibliography, Scientific Committee on Antarctic Research, British Antarctic Survey, Cambridge.
BEDMAP. 1996. Report of the 1st BEDMAP Workshop on Antarctic Bed Mapping. Cambridge.
BEDMAP. 1999. Report of the 2nd BEDMAP Workshop on Antarctic Bed Mapping. Cambridge.
Beitzel J. 1971. Geophysical exploration in Queen Maud Land, Antarctica. In: Crary A.P (ed) AGU Antarctic Research Series, № 16, pр. 39–87.
Crary A.P., Robinson E.S. 1962. Oversnow traverses from McMurdo to the South Pole. Science, № 135, pр. 291–295.
Drewry D.J., Meldrum D.T. 1978. SPRI Folio Series. Pol. Rec. 19 (120), pр. 267–278.
Gesch D.B., Larson K.S. 1996. Techniques for development of global 1-kilometer digital elevation models. Pecora Thirteen. Human Interactions with the Environment – Perspectives from Space, Sioux Falls, South Dakota.
Liu H., Jezek K., Li B., Zhao Z. 2001. Radarsat Antarctic Mapping Project digital elevation model version 2. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.
Lythe M.B., Vaughan D.G. and BED-MAP Consortium. 2000. BEDMAP– bed topography of the Antarctic, 1:10 000 scale map. BAS (Misc) 9. Cambridge: British Antarctic Survey.
McLean M., Damaske D., Damm V., Reitmayr G. 2004. Airborne gravity data acquisition and processing: A case study in the Prince Charles Mountains, East Antarctica. Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop, Sydney 2004, Record 2004/18, pр. 99–110.
Studinger M., Bell R., Karner G.D., Tikku A.A., Holt J.W., Morse D.L., Richter T.G., Kempf S.D., Peters M.E., Blankenship D.D., Sweeney R.E., Rystrom V.L. 2003. Ice cover, landscape setting and geological framework of Lake Vostok, East Antarctica. Earth Planet. Sci. Lett., 205, pp. 195–210.
S.V. Popov[21], G.L. Leitchenkov[22], V.N. Masolov[23], V.M. Kotlyakov[24], M.Ju. Moskalevsky[25]. Ice thickness and bedrock topography of East Antarctica (results of IPY Project)
Abstract
New ice thickness and bedrock topography maps have been compiled for the part of East Antarctica (between 20°E and 160°E) within the IPY Project ABRIS (Antarctic Bedrock Relief and Ice Sheet). For compilation of maps, ice-thickness data collected during the Soviet/Russian Expeditions from 1966 to 2008 and data collected by different foreign organizations and obtained from the international data bases were used.
А.А. Лайба[26], Д.М. Воробьев[27], Н.А. Гонжуров[28], Е.В. Михальский[29]
Рифейский вулкано-плутонический комплекс в горах Принс-Чарльз (Восточная Антарктида): геологическое строение и геодинамическая обстановка формирования
Аннотация
Экспедиционные исследования последних лет, выполненные в рамках 3 МПГ, включая пересмотр и интеграцию на новом уровне раннее собранных материалов, позволили существенно уточнить строение, состав и границы рифейского вулкано-плутонического комплекса (Фишерский комплекс), формирующего узловую область в общей геологической картине региона. Для осадочно-вулканогенной серии комплекса реконструирована стратиграфическая последовательность напластований, включающая семь вулканогенных и осадочно-вулканогенных свит общей мощностью около 10 км. Их формирование происходило в период около 1300 млн. лет. Установлено, что общий тренд эволюции вулканитов имел, в целом, прямой, непрерывно-дифференцированный характер: от основных к кислым, от толеитовых к известково-щелочным и умеренно щелочным, от натровых к калиево-натровым и калиевым по щелочности типам пород. Подтверждено выделение двух интрузивных ассоциаций: ранней габбро-диорит-плагиогранитной и поздней габбро-гранит-сиенитовой. Интрузивные ассоциации формировалась в период между 1290 и 1200 млн. лет назад. Наличие петрохимических интрузивных серий, достаточно хорошо коррелируемых со сходными сериями в вулканических породах, подтверждает их общую вещественную и генетическую связь. В региональном плане Фишерская область входит в состав Циркумантарктического подвижного пояса – наиболее крупной структуры Восточноантарктического кратона. Фишерская область представляет собой, по-видимому, наиболее сохранившийся построению и составу фрагмент этой протерозойской подвижной структуры и отражает один из вариантов его развития на раннем этапе. Палеотектонические обстановки для данного фрагмента соответствуют надсубдукционным магматическим дугам в период 1300–1200 млн. лет.
Введение
Рифейский (мезопротерозойский) вулкано-плутонический комплекс, выделенный в 1990-е годы в центральной части гор Принс-Чарльз в качестве ассоциации сходных по химическому составу и характеру метаморфизма вулканогенных образований и прорывающих их интрузивных тел (Иванов и Каменев, 1990), резко отличающихся от образований, развитых в сопредельных районах Восточной Антарктиды, слагает сравнительно узкую (50–80 км шириной) структурную область между позднерифейскими (неопротерозойскими) гранулитовыми комплексами на севере и архейскими полиметаморфическими образованиями на юге (рис. 1). Коренные выходы в пределах этой области представлены пятью небольшими изолированными горными массивами: Фишер, Уиллинг, Скалы Нильссон, Коллинс и частично Мередит. Наиболее полно формации комплекса вскрываются на массиве Фишер, почему он и получил название Фишерского комплекса. Это название для краткости будет в дальнейшем использовано.
Рис. 1. Упрощенная схема тектонического районирования региона ледников Ламберта-Эймери. 1–2 – мезоархейско-палеопротерозойская Рукерская провинция: 1 – Рукерская область, 2 – Ламбертская область. 3 – неоархейский блок оазиса Вестфолль. 4–6 – мезопротерозойско-неопротерозойская Рейнерская провинция: 4 – неклассифицированные территории, 5 – Фишерская область, 6 – Биверская область. 7 – мезозойско-кайнозойская рифтовая система.
Горные массивы центральной части гор Принс-Чарльз располагаются непосредственно в западном плече мезо-кайнозойской рифтогенной структуры ледников Ламберта – Эймери. По данным радиолокационного зондирования, массивы Фишер, Мередит, Уиллинг и Скалы Нильссон объединены между собой подледным плато, имеющим уровень поверхности в среднем 200 м над уровнем моря. Сами горные выходы представляют собой приподнятые изолированные тектонические блоки размером от 2х11 км (массив Коллинс) до 10х32 км (массив Фишер) с относительными превышениями скальных бортов над уровнем ледника от 50 до 1500 м.
Структурное положение Фишерского комплекса на стыке двух крупных тектонических областей делает его, по сути, ключевым в строении региона гор Принс-Чарльз. Умеренный метаморфизм (не выше амфиболитовой фации средних ступеней) и местами слабая дислоцированность пород позволяют с достаточной уверенностью реконструировать их первичный состав, формационную принадлежность и палеогеодинамическую обстановку заложения и эволюции данной структуры. Вот почему к этому узловому объекту проявлен повышенный интерес: целенаправленные геолого-геофизические исследования в его пределах проводились в ходе 10 экспедиций в период 1985–2008 гг. Уже к середине 1990-х годов был накоплен большой материал, обработка и обобщение которого позволили создать геодинамическую модель развития Фишерского вулкано-плутонического комплекса в конвергентных геодинамических условиях. Однако детальное строение, возрастные рубежи, границы развития Фишерского комплекса оставались не вполне ясными. Да и выдвинутая геодинамическая модель вызывала у некоторых специалистов определенный скептицизм и даже неприятие, вплоть до отрицания наличия вулканитов в составе комплекса. Например, Каменев и Семёнов (2008) предполагают исключительно энсиалическое развитие протерозойского подвижного пояса с преобладанием чарнокит-гранулитовых и гранит-гнейсо-сланцевых поясов при локальном развитии гранит-зеленокаменных поясов.
В связи с этим в 2006–2008 гг. (51–53 РАЭ) в рамках 3 МПГ были осуществлены дополнительные экспедиционные исследования основных объектов Фишерского комплекса и обобщен весь обширный материал, как по этому узловому району, так и по смежным областям, включая зоны возможного продолжения комплекса на юг и на восток. Данная статья представляет собой краткий сводный результат такой интеграции.
1. Краткий обзор исследований
Горные массивы центральной части гор Принс-Чарльз были впервые обследованы в начале 1970-х гг. геологами НИИГА (ныне ВНИИОкеангеология) в ходе комплексных региональных работ 17–19 САЭ. На массиве Фишер в ходе рекогносцировочных авиадесантных исследований были обнаружены метабазиты, отнесенные затем в единую формацию с архейскими метабазитами супракрустальных серий юга гор Принс-Чарльз (Соловьев, 1971; Равич и др., 1978).
В 1983–1986 гг. (29 и 31 САЭ) на массивах Мередит и Фишер специалистами ПМГРЭ была осуществлена геологическая съемка, приближающаяся к масштабу 1:200 000. Было установлено, что на массиве Фишер развиты осадочно-вулканогенные породы, прорванные интрузивами от основного до кислого составов. Супракрустальные породы, выделенные авторами как «фишерский комплекс», были расчленены на две толщи общей мощностью до 3,5 км, а их возраст был принят условно как раннепротерозойский (Красников и Федоров, 1992).
В 1987–1988 гг. (34 САЭ) на массиве Фишер были проведены дополнительные геологические работы, специализированные по петролого-геохимическому направлению, и тогда же авиадесантным способом были обследованы массивы Коллинс, Уиллинг и Скалы Нильссон. Большая часть интрузивных образований на массиве Фишер объединена в габбро-диорит-плагиогранитную ассоциацию с верхним возрастным пределом 1380±90 млн. лет (Михальский, 1993). В 1990–1991 гг. (36 САЭ) на массиве Фишер выполнены детальные работы по составлению стратотипных разрезов осадочно-вулканогенных толщ. Выделена вулканогенно-осадочная серия Фишер, включающая четыре толщи общей мощностью до 3,7 км, положенная в основу современной стратиграфической схемы. Изотопное датирование кислых метавулканитов установило их возраст, равный 1300 млн. лет (Beliatsky et al, 1994).
В 1993–1996 гг. (39 и 40 РАЭ) на массивах Уиллинг и Скалы Нильссон были проведены картировочные работы, по результатам которых построены схематические геологические карты масштабов 1:10 000–1:25 000, а также составлен подробный сводный разрез расслоенных метагабброидов. В 1999–2000 гг. (45 РАЭ) выполнены картировочные работы на массиве Коллинс, в ходе которых построена схематическая геологическая карта масштаба 1:25 000 и выявлено сложное строение многофазного диорит-сиенитового интрузива, отнесенного в состав Фишерского комплекса. В 2003–2006 гг. (49–51 РАЭ) проведены исследовательские и картировочные работы на массиве Мередит, позволившие построить уточненную геологическую карту масштаба 1:100 000 и выделить в южной половине массива образования Фишерского комплекса, а также в более южных участках (массив Шо и др.) и в восточном борту шельфового ледника Эймери, где были выявлены геологические тела сходного состава.
В разные годы массивы Фишер, Коллинс, Уиллинг, Мередит и Скалы Нильссон посещались также австралийскими геологами. В ходе кратковременных выавиадесантных исследований изучались вещественный состав и структурное положение пород Фишерского комплекса. Наиболее значимыми результатами явились определения с помощью локального ионного микрозондирования (SHRIMP) возрастов метавулканитов и гранодиоритов массива Фишер, гранитов и сиенитов массива Коллинс и парагнейсов массива Мередит (Sheraton et al., 1996; Kinny et al., 1997).
Наконец, в 2006–2008 гг. (52 и 53 РАЭ), в рамках программы 3 МПГ, были проведены дополнительные работы на массивах Фишер и Уиллинг, позволившие построить уточненные геологические карты масштабов 1:25 000–1:100 000, составить наиболее полный сводный разрез осадочно-вулканогенной серии Фишер, мощность которой увеличена до 10 км, и детализировать строение расслоенных и многофазных плутонов ранней интрузивной ассоциации.
Таким образом, в ходе многолетних отечественных исследований установлено, что центральный район гор Принс-Чарльз (между 71°15` и 72°00` ю.ш.) сложен своеобразным комплексом умеренно метаморфизованных осадочно-вулканогенных и интрузивных пород рифейского возраста. В определении палеотектонической обстановки для Фишерского комплекса мнения специалистов разошлись.
По результатам первых рекогносцировочных исследований проводилась корреляции фишерских метабазитов с формацией рифейских траппов плоскогорья Ричер на Земле Королевы Мод (Равич и др., 1978). Следующие исследователи полагали, что образование этой ассоциации было приурочено к прогибу типа грабен-синклинория с развитием по принципу раннедокембрийских зеленокаменных поясов (Красников и Федоров, 1992). Авторы монографии по геологическому строению Антарктиды (Иванов и Каменев, 1990) сопоставили фишерские метавулканиты со спилит-кератофировой группой формаций, плутониты с габбро-плагиогранитной группой формаций, а сам комплекс отнесли к архейско-раннепротерозойским зеленокаменным структурам Рукерской области, развитой на юге гор Принс-Чарльз. Сходной интерпретации придерживался и Д.П Крылов, отнесший массив Фишер к фрагменту зеленокаменного пояса бимодального типа (Крылов и Крутикова, 1994).
Е.В. Михальский и А.А. Лайба выдвинули альтернативную геодинамическую модель: Фишерский комплекс был отождествлен с конвергентными образованиями гренвильского тектонического цикла. Было обосновано его сходство с краевыми вулкано-плутоническими поясами, развитыми на активных континентальных окраинах в ассоциации с островными вулканическими дугами (Михальский, 1993, 2007; Mikhalsky et al., 1996; 2001; Михальский, 1993, 2007; Лайба и Михальский, 1999; 2001; Лайба, 2000 и др.). Представления о конвергентной природе Фишерского комплекса остаются и сейчас наиболее обоснованной и непротиворечивой геодинамической моделью.
2. Положение в региональной структуре
Горы Принс-Чарльз и прилегающие районы Земли Принцессы Елизаветы составляют один из крупнейших горных регионов Восточной Антарктиды. В его пределах вскрываются три древнейших тектонических провинции (рис. 1): а) мезоархейско-палеопротерозойская Рукерская провинция на юге; б) неоархейская Вестфолльская провинция на северо-востоке; в) обширный мезо-неопротерозойский Циркумантарктический подвижный пояс, разделяющий и цементирующий раннедокембрийские провинции (Tingey, 1991; Иванов и Каменев, 1990; Лайба и др., 2001; и др.). В составе Рукерской провинции некоторыми исследователями выделяются две области или террейна, различающиеся особенностями геологического строения и истории формирования: мезо-неоархейская Рукерская гранит-зеленокаменная область и палеопротерозойская Ламбертская орогеническая область (Mikhalsky et al., 2006). Циркумантарктический подвижный пояс в регионее ледника Ламберта также неоднороден и включает, по крайней мере, две структурно-формационные области: мезопротерозойскую Фишерскую «амфиболито-сланцевую» область и ранненеопротерозойскую Биверскую гранулито-гнейсовую область (Иванов и Каменев, 1990, Mikhalsky et al., 2001).
Фишерский вулкано-плутонический комплекс развит в пределах Фишерской области в центральной части гор Принс-Чарльз; он включает осадочно-вулканогенную серию Фишер мощностью не менее 10 км и ассоциацию специфических интрузивных образований, развитых только в пределах данного комплекса. Серия Фишер наиболее полно вскрывается на одноименном массиве, где включает семь свит, сложенных толщами умеренно метаморфизованных (эпидот-амфиболитовая и амфиболитовая фации) вулканических и туфогенно-осадочных пород преимущественно андезитового состава. Вулканогенные свиты прорваны сравнительно небольшими, но многочисленными интрузивами основных, средних и кислых составов, большей частью метаморфизованных наравне с вулканитами. К комагматичным с последними отнесены габброиды, диориты, тоналиты и плагиограниты, развитые на всех указанных массивах. Они объединены по вещественным и возрастным признакам в раннюю габбро-диорит-плагиогранитную ассоциацию. Распространенные не столь широко интрузивы субщелочных габброидов, трахидолеритов, гранитов, гранодиоритов и сиенитов выделены по геологическим и геохронологическим данным в позднюю габбро-гранит-сиенитовую ассоциацию.
Осадочно-вулканогенные и интрузивные образования включены в состав единого вулкано-плутонического комплекса по следующим признакам: а) пространственной сопряженности; б) отсутствию подобных на сопредельных территориях; в) сходным условиям наложенного метаморфизма; г) формационному соответствию, указывающему на их образование в однотипных геодинамических (тектонических) условиях; е) совпадающими или близкими с вулканитами геохронологическими датировками.
3. Осадочно-вулканогенная серия Фишер
Преимущественно вулканогенные по своему первичному составу толщи занимают на массиве Фишер и Скалах Нильссон не менее 50 % их обнаженных площадей; на массивах Уиллинг и Коллинс они присутствуют в форме ксенолитовых блоков среди резко преобладающих интрузивных ассоциаций, а на массиве Мередит занимают его южную половину, контактируя по тектоническому разлому с метаморфическими сериями Биверского комплекса (рис 2).
На массиве Фишер осадочно-вулканогенная серия слагает центральные и южные районы (рис. 2). Современное генеральное залегание пород – моноклинальное с падением на север – северо-запад под углами 50–90°, в отдельных случаях были зафиксированы крутые юго-восточные падения. Анализ всех имеющихся геологических материалов дает основание рассматривать преобладающее залегание пород с северо-западным падением – как опрокинутое. Наращивание разреза следует в целом с северо-запада на юго-восток и завершается, вероятно, свитой из жерловых фаций, сформировавшихся в кратерной части крупной вулканической постройки. Суммарная мощность супракрустальных свит оценивается в 9,5–10 км.
В составе серии выделено, с учетом последних исследований в рамках 3 МПГ, семь свит: 1) андезибазальтовая, 2) андезитовая, 3) базальт-андезибазальтовая, 4) туфогенно-осадочная, 5) андезито-базальтовая, 6) дацит-андезитовая (туфогенная), 7) андезит-базальт-дацитовая (жерловая). В большинстве свит наряду с покровными вулканитами присутствуют прорывающие согласные и пологосекущие тела субвулканитов среднего – кислого составов. В сводном разрезе серии суммарные мощности вулканогенных пород (лав, туфов, субвулканитов) составляют: базальты – 21 %, андезибазальты – 36 %, андезиты – 21 %, андезидациты – 9 %, дациты – 7 %, риодациты – 6 %. Собственно осадочные породы: метаморфизованные туфоалевролиты, туфопесчаники и алевропесчаники с подчиненным объемом мраморизованных карбонатов и гематитовых кварцитов, – не превышают 10 % от объема серии.
U-Pb изохронный возраст фишерских метавулканитов был определен по пробам, отобранным из кислых и средних метавулканитов шестой и седьмой свит. Исследования показали, что большинство выделенных цирконов были кристаллизованы в течение одного термального события: 1300±4 млн. лет, интерпретируемого как возраст извержения (Beliatsky et al, 1994). Среднерифейский возраст фишерских метавулканитов был подтвержден австралийскими геологами, получившими методом SHRIMP возраст 1283±21 млн. лет, проинтерпретированный также как возраст извержения (Kinny et al, 1997).
На массиве Скалы Нильссон метаморфическая свита Нильссон достигает в мощности 1,5 км. В ее составе преобладают амфибол-биотитовые (нередко с гранатом) гнейсы и плагиогнейсы, мафические существенно амфиболовые (иногда с клинопироксеном) кристаллосланцы и амфибол-биотитовые меланогнейсы. Мафические кристаллосланцы сохраняют реликты субофитовых, микрогаббро-долеритовых, базальтоидных (апостекловатых) и туфогенных структур. В свою очередь гнейсы и плагиогнейсы обладают полосчатыми, тонкослоистыми и слоисто-обломочными (туфогенными) текстурами и также сохраняют реликты порфировых, фельзитовых (эффузивных) и микроинтрузивных (субвулканических) первичных структур.
На массиве Мередит метаморфические толщи, соответствующие по вещественным и возрастным характеристикам Фишерскому комплексу, слагают его южную половину. Они выделены в свиту Мередит мощностью около 4 км (без учета складчатости), которая включает толщи биотит-плагиоклазовых и биотитовых парагнейсов, маломощные пачки кварцитов, мраморов и кальцифиров, прослоенных крупными пачками ортогнейсов биотит-амфибол-плагиоклазового (метадиориты) и биотит-амфиболовового (метагранитоиды) составов. Парагнейсовые разности составляют около 80 % объема свиты и отвечают по реконструкциям осадочным и туфогенно-осадочным породам. По цирконам из ортогнейсов методом SHRIMP-II получены конкордатные возрастные рубежи: 1294±3, 1105±5, 957±4 и 887±2 млн. лет (Лайба и Гонжуров, 2006; Гонжуров и Лайба, 2009). Наиболее древние датировки отражают, по-видимому, время кристаллизации ортогнейсовых протолитов, а остальные – датируют различные фазы гренвильского метаморфизма.
Метабазальты массива Фишер имеют достаточно выдержанные химические составы по всем компонентам. Их общей особенностью является относительно низкие содержания К2О (обычно менее 1 %) при стабильно повышенных, в целом, количествах Na2O (2–4,6 %). При этом базальты четко разделяются на два петрохимических типа, названные для краткости типами В1 и В2. Базальты В1 имеют mg=53–65 и содержат нормативный оливин, а базальты В2 имеют низкий показатель магнезиальности mg=45–52 и содержат нормативный кварц. На диаграмме AFM (не приведена) оба типа располагаются в поле толеитовых пород, но при этом В2 демонстрируют тенденцию перехода к известково-щелочному типу. На графике нормированных содержаний микрокомпонентов (не приведен), базальты В1 демонстрируют черты P-MORB со слабой обогащенностью крупноионными литофильными элементами (Rb, Ba, K, Th, U), а базальты группы В2 еще более обогащены литофилами, не только крупноинными, но и высокозарядными (Nb, Zr, Ti) и в определенной степени близки базальтам океанических островов (OIB, Mikhalsky et al., 1996, Михальский, 2007). Отрицательные Nb аномалии не характерны для этих пород.
Кислые и средние вулканиты и субвулканиты большинства фишерских свит стабильно выделяются повышенными содержаниями Na2O (в среднем 4,58 %) при пониженных К2O (в среднем 0,6 %) и по этому признаку выделены в петрохимическую группу А1. На диаграмме AFM низкокремнистые составы А1 образуют известково-щелочной тренд, связанный с изменением состава пород в направлении снизу вверх по разрезу серии Фишер. Эффузивные и пирокластические породы шестой свиты выделены в петрохимическую группу А2. Они обладают характерно повышенными содержаниями K2O (в среднем 2,12 %), имея, таким образом, уже калиево-натровую специализацию. На диаграмме AFM средние составы вулканитов А2 располагаются в поле известково-щелочных пород (Mikhalsky et al., 1996, 2001; Лайба, 2000). Для пород группы А2 весьма характерны значительные отрицательные аномалии Nb. Химические составы метаморфических свит других массивов Фишерской области, имеют сходные характеристики с выделенными петрохимическими группами. Метавулканиты Фишерского комплекса в целом характеризуются низкими значениями Sri (0.703–0.704 и высокими значениями параметра εNd (2–4).
4. Интрузивные ассоциации Фишерского комплекса
Среднерифейские метаинтрузивы Фишерского комплекса по вещественным и возрастным признакам разделены на раннюю габбро-диорит-плагиогранитную и позднюю габбро-гранит-сиенитовую ассоциации. Интрузивные породы несут наряду с вулканитами следы явного метаморфического воздействия, однако в дальнейших описаниях приставка «мета» из названий пород убрана с целью упрощения.
Габбро-диорит-плагиогранитная ассоциация на массиве Фишер представлена группой сопряженных или самостоятельных тел варьирующего состава: габброиды и габбро-диориты, диориты и кварцевые диориты, тоналиты и плагиограниты. По площади развития преобладают габброиды и диориты. Массив Уиллинг почти целиком сложен интрузивными телами обеих ассоциаций, но при доминировании первой. Она представлена наиболее крупным плутоном расслоенных габброидов (плутон «Уиллинг») и крупным интрузивом тоналит-плагиогранитного состава, а также штоками габброидов, жилами и дайками метабазитов (амфиболитов), кварцевых диоритов, тоналитов и плагиогранитов. В Скалах Нильссон ассоциация представлена преимущественно габброидами, тогда как диориты и плагиогранитоиды развиты весьма ограниченно. Кроме того, здесь обнаружены несколько мелких тел ультраосновного состава, также включенных в состав рассматриваемой ассоциации.
Для габброидов большинства сравнительно крупных плутонов характерна хорошо выраженная вещественная дифференциация, проявленная в форме видимой и скрытой расслоенности. Наиболее крупным и подробно изученным в этом ряду является плутон «Уиллинг», слагающий целиком восточную половину одноименного горного массива. Максимальные размеры обнаженной части плутона составляют 3,8х7,6 км, а по данным аэромагнитной съемки интрузив представляет собой изометричное тело диаметром 10–12 км, большая часть которого перекрыта ледником. Истинная мощность обнаженной части плутона составляет не менее 3135 м. Sm-Nd исследования по валовым пробам габброидов показали возраст 1233±160 млн. лет (Mikhalsky et al., 1993); по орто– и клинопироксену тем же методом получен возраст 1292±67 млн. лет (неопубликованные данные). U-Pb датирование по циркону из метагабброида плутона «Уиллинг» указывает на кристаллизацию пород на рубеже 1238±32 млн. лет и наложенное термальное событие на рубеже 800 млн. лет назад (TIMS; Лайба и Михальский, 1999).
Диориты, тоналиты и плагиограниты также формирует довольно крупные интрузивные тела, как правило, многофазного состава. Это тоналит-плагиогранитный плутон (4х7 км) на массиве Уиллинг, диорит-тоналит-плагиогранитный плутон (2,5х8 км) на массиве Фишер и другие. Как крупные, так и мелкие тела ориентированны в целом конкордатно с генеральным залеганием вмещающих толщ, каковыми являются осадочно-вулканогенные толщи и интрузивные габброиды. По взаимным соотношениям устанавливается последовательность внедрения: диориты (кварцевые диориты) – тоналиты – плагиограниты. U-Pb определения по цирконам из метатоналитов массива Уиллинг показали возраст 1177±16 млн. лет (Mikhalsky et al., 1999), который в первом приближении может рассматриваться как возраст внедрения.
Анализ химических составов интрузивных пород габбро-диорит-плагиогранитной ассоциации позволил выделить, по крайней мере, две крупных геохимических группы (серии), отличные по соотношениям щелочей и других элементов. Эти группы, принадлежат соответственно к натровой и к калиево-натровой сериям. Судя по прямым и косвенным геологическим данным, становление каждой из них начиналось с внедрения габброидных дифференцированных плутонов и заканчивалось образованием плагиогранитных интрузивов и жил различных составов. Наличие петрохимических интрузивных серий, достаточно хорошо коррелируемых со сходными сериями в вулканических породах, подтверждает их общую вещественную и генетическую связь.
Габбро-гранит-сиенитовая ассоциация развита менее широко по сравнению с ранней. Она включает субщелочные габброиды, трахидолериты, нормальные и субщелочные граниты, гранодиориты и сиениты. Судя по вещественным особенностям и пространственной сопряженности, эти магматиты также составляют родственную интрузивную ассоциацию.
Субщелочные метагабброиды известны только в Скалах Нильссон, где слагают несколько тел и мелких штоков, прорывающих породы метаморфической свиты. Наиболее крупные тела (до 500 м в поперечнике) имеют неправильные формы, а мелкие линзовидные тела ориентированы согласно со структурой вмещающих пород. Метатрахидолериты в форме редких и маломощных даек были обнаружены на массивах Фишер и Уиллинг. Они интрудированы как в осадочно-вулкангогенные толщи, так и в габброидные плутоны.
Метаморфизованные граниты и субщелочные граниты в форме небольших тел, штоков и многочисленных жил развиты на большинстве горных массивов. Размеры наиболее крупных тел достигают 1х2,8 км. U-Pb определения по циркону из гранитов показали конкордатный возраст 1194±1 млн. лет, интерпретируемый как возраст внедрения (Лайба, 2000). Все граниты данной группы имеют практически однотипные химические составы, подтверждающие их вещественно-генетическую и возрастную однородность. Они относятся преимущественно к калиевой серии, а по сумме щелочей (7,5–9 %) большей частью относятся к субщелочному ряду.
Метаморфизованные сиениты слагают субщелочной многофазный плутон, занимающий целиком горный массив Коллинс. (рис. 2). По данным аэромагнитной съемки реальные размеры интрузива достигают 5х14 км. В составе плутона выделено пять интрузивных фаз и многообразный прорывающий жильный комплекс. Интрузивные фазы включают (от ранних к поздним): 1) субщелочные диориты, 2) монцодиориты, 3) сиениты, 4) граниты, 5) субщелочные габброиды. По объему развития преобладают породы первой и третьей интрузивных фаз. Широко развитый (до 10 % от объема всех фаз) поздний жильный комплекс насчитывает шесть групп различных монцодиоритов и трахидолеритов, которые секут все без исключения породы интрузивных фаз. U-Pb изотопные определения по интрузивным и жильным фазам показали соответственно рубежи 1250 и 1220 млн. лет, интерпретируемые как возрасты внедрения (Лайба и др., 2001).
Рис. 2. Геологическая схема северных и центральных районов гор Принс-Чарльз. 1 – ледниковый покров: а) материковый лед, б) выводные ледники, в) шельфовые ледники; 2 – палеогеновые покровные трахибазальты; 3 – меловые штоки и дайки щелочно-ультраосновных пород; 4 – пермско-триасовый угленосный комплекс Эймери; 5 – раннепалеозойские граниты; 6–10 – неопротерозойский Биверский комплекс: 6 – интрузивные чарнокиты, граниты и гранодиориты, 7 – метагабброиды и метабазиты, 8 – мелкие тела гипербазитов, 9 – существенно ортогнейсовая серия Портос, 10 – существенно парагнейсовые серии Атос и Астрономов; 11–14 – мезопротерозойский (рифейский) Фишерский комплекс: 11 – гранитоиды поздней ассоциации, 12 – гранитоиды ранней ассоциации, 13 – габброиды ранней ассоциации, 14 – осадочно-вулканогенная серия Фишер; 15 – нерасчлененные образования Фишерского комплекса; 16 – структурные линии; 17 – тектонические нарушения.
5. Метаморфизм и складчатые деформации
Анализ метаморфических преобразований, выявленных на всех горных массивах, входящих в Фишерскую область, позволил выделить в общей сложности три этапа регионального метаморфизма. Главный этап метаморфических преобразований достигал условий эпидот-амфиболитовой фации (Т=480–585°С, Р=2–3 кбар) в центральной части массиве Фишер и условий гранат-амфиболитовой фации (Т≥600°С, Р≥6 кбар) на массивах Уиллинг, Коллинс и Скалы Нильссон. По-видимому, он протекал в две стадии или даже составлял два самостоятельных этапа М1 и М2 на рубежах 1110 и 1000 млн. лет (Mikhalsky et al., 1993, 1999). Третий этап М3 соответствовал зеленосланцевой фации и достигал условий субфации высоких (330–460°С) температур и низких, средних давлений в период 870–810 млн. лет (Лайба, 2000).
Выделено соответственно не менее трех последовательных этапов пластических деформаций пород Фишерской области. Наиболее ранний этап D1 связан с формированием мелкой дисгармоничной складчатости F1, имевшей место, по-видимому, одновременно с метаморфизмом М1. Этап D2 являлся наиболее значительным в Фишерской области. С ним связано формирование основной складчатости, выраженной в образовании крупных открытых складок с амплитудами 5–15 км и крутопадающими на северо-запад осевыми поверхностями, осложненных складками второго порядка. По-видимому, складчатость F2 сформировалась в результате бокового сжатия в период перестройки (закрытия?) фишерской структуры. Этап деформаций D2 коррелируется со вторым этапом метаморфизма М2.
Этап D3 выражен в образовании в приразломных зонах локальной складчатости F3, многочисленных зон рассланцевания, бластомилонитизации и структур типа вязких разломов («shear zones»). Возможно, деформации этапа D3 сопровождались метаморфизмом М3 на рубеже около 800 млн. лет назад. Не исключено, что некоторые деформации данного этапа имели место позднее, в период кембрийской активизации (550–500 млн. лет), проявленной, в частности, на массиве Мередит. В дальнейшем Фишерская структура выступала как жесткий блок, испытывавший лишь хрупкие разрывные деформации в период мезозойского рифтогенеза и неотектонической активизации.
6. Палеотектоническая (геодинамическая) обстановка
Возраст и пространственное положение Фишерского комплекса определенно привязывают его к протерозойскому подвижному поясу, протягивающемуся вдоль всего побережья Восточной Антарктиды от Земли Королевы Мод до островов Уиндмилл. Данная структура, так называемый Циркумантарктический подвижный пояс, является в свою очередь составной частью глобальной гренвильской системы подвижных поясов (Dalziel, 1991). Существует предположение о том, что он развивался как краевой вулканно-плутонический пояс, сформированный последовательной аккрецией ювенильных вулканических и магматических дуг на интервале 1500–1050 млн. лет назад (Михальский, 2007, 2008). Наиболее вероятными палеотектоническими обстановками (геодинамическими моделями) для формирования Фишерской вулкано-плутонической структуры могут быть по существу только две: а) конвергентная и б) рифтогенная.
Геологические особенности Фишерской зоны, такие как очевидная локальность развития, значительные мощности вскрытых осадочно-вулканогенных толщ (до 10 км), преобладающий базальт-андезитовый вулканизм, наличие многочисленных и разнообразных по составу интрузивов, наложенная складчатость, вызванная по всей вероятности боковым сжатием, позволяют отождествлять Фишерскую палеоструктуру со структурами типа надсубдукционных островных и магматических дуг. Подобные пояса известны, начиная с раннего протерозоя (Хаин и Божко, 1988). Особенности вещественного состава магматических пород Фишерского комплекса подтверждают высказанное суждение. Фишерские метавулканиты включают широкий диапазон составов при явном преобладании андезитов, включая типично толеитовые составы островодужного типа. Для вулканитов характерен общий тренд вещественной эволюции от толеитовых к известково-щелочным и умеренно-щелочным петрохимическим сериям. Отсутствие отрицательной аномалии Nb на диаграмме нормированных содержаний микрокомпонентов в большинстве базальтоидов, при отчетливой обогащенности крупноионными элементами, определяется незначительными концентрациями легких редкоземельных элементов. Это может быть следствием особенностей фактора метасоматизации мантийного клина в надсубдукционных условиях. В частности, пониженные концентрации легких редкоземельных элементов могут указывать на ограниченное вовлечение осадочного вещества при преобладающем воздействии жильных образований. В целом указанные вещественные особенности типичны для магм, произведенных в конвергентных условиях плитной окраины (Богатиков и др., 1987 а). Состав и строение плутонических изученных ассоциаций близки к таковым для вышеуказанных вулкано-плутонических поясов.
Тройные вариационные диаграммы: Zr/4-2Nb-Y (Meschede, 1986), Ti/100-3Y (Pearce & Cann, 1973) и 10MnO-TiO2-10P2O5 (Mullen, 1983) (не представлены) показывают, что фишерские метабазальты обоих геохимических типов образуют поля, частично перекрывающие области островодужных базальтов (IAB) и базальтов срединно-океанических хребтов (MORB), но отчетливо лежащие вне области внутриплитных базальтов. Средние породы вулканических групп А1 и А2 также имеют островодужные известково-щелочные характеристики. Кроме того, кислые метавулканиты типа А2 имеют низкие содержания Rb, Y и Nb, более характерные для гранитоидов островных дуг, чем для пород коллизионных, внутриплитных или океанических хребтов – по классификации (Pearce et al., 1984). Наконец, все интрузивные граниты поздней ассоциации по аналогичным соотношениям Y, Nb и Rb имеют составы островодужного типа. При этом субщелочной многофазный плутон массива Коллинс уже соотносим с позднеорогенной (коллизионной) монцонит-гранодиорит-сиенитовой формацией (по Богатикову и др., 1987 б).
Рифтогенный генезис Фишерского вулкано-плутонического комплекса менее предпочтителен как по вещественным, так и по геологическим аспектам. Рифтогенные вулканические серии обычно составлены из бимодального ряда, а не базальт-андезитового, как в Фишерском комплексе; в геохимическом плане для них характерны внутриплитные щелочные серии пород, а не близкие к островодужным серии с трендом от толеитовых к известково-щелочным. В пользу рифтогенного генезиса Фишерской структуры (Mikhalsky et al., 1992) может свидетельствовать, пожалуй, только наличие расслоенных габброидных плутонов, обычно связанных с внутриплитными и рифтогенными обстановками, и широкое распространение в сопредельных районах (оазис Вестфолль и Рукерская область) дайковых роев основного состава, имеющих сопоставимый с Фишерским комплексом возраст. Однако в некоторых случаях интрузивы расслоенных габброидов приурочены к нестабильным геодинамическим обстановкам или к зонам преимущественного сжатия. В этих случаях они кристаллизуются до или одновременно со складчатыми или разрывными деформациями, например, в фанерозойских геосинклинальных областях или в мезо-кайнозойских активных континентальных окраинах (массивы Златогорский и Лысогорский в каледонидах Северного Казахстана и Западного Саяна; массив Гваделупа в североамериканских Кордильерах) (Михайлов и др., 1971; Андреева и др., 1985; Кузнецов, 1989).
Таким образом, геологические, вещественные и возрастные особенности магматитов Фишерской области показывают, что последняя, по-видимому, представляет собой фрагмент конвергентной палеоструктуры гренвильской тектонической эпохи. Это могла быть надсубдукционная зона, образованная вначале по типу океанической островной дуги (продукты нижних существенно натровых свит), затем эволюционировавшая в зрелую вулканическую или магматическую дугу с причленением к континенту (вулканические продукты верхней калиево-натровой свиты плюс ранняя интрузивная ассоциация), и завершившая свое развитие по типу активной континентальной окраины и зоны коллизии (поздняя интрузивная ассоциация). Развитие этой геодинамической системы происходило на интервале 1300–1200 млн. лет назад. Возможно, что на интервале времени 1100–1000 млн. лет назад развивалась сходная система или происходила активизация структур более раннего заложения, на что указывают датировки в этом диапазоне, полученные для основных кристаллических сланцев и тоналитовых гнейсов в восточном борту шельфового ледника Эймери (Михальский и др., 2006) и массива Шо (Маслов и др., 2007).
Область развития Фишерского комплекса, возможно, продолжается к северо-востоку, пересекая рифтовую долину ледников Ламберта – Эймери. В восточном борту указанных ледников на небольших горных выходах выявлены метаморфические толщи, имеющие определенное вещественное и возрастное сходство с образованиями Фишерского комплекса. Так для парагнейсовых свит этого региона (Робертсон и Маннинг) реконструируются терригенные и вулканогенные (базальт-андезитовые) первичные составы, а ортогнейсовая свита Пиккеринг с возрастом протолита не менее 1100 млн. лет довольно хорошо коррелируется с породами габбро-диорит-плагиогранитной ассоциации (Лайба и Кудрявцев, 2006; Михальский и др., 2006).
7. Корреляция со сходными структурами
На антарктическом континенте образования Фишерского комплекса наиболее хорошо сопоставляются с вулканогенными породами гор Сер-Роннане Земли Королевы Мод (примерно в 1500 км к западу от гор Принс-Чарльз) (Лайба, 2000; Лайба, 2000; Михальский, 2007). Геологические формации Земли Королевы Мод также входят в региональную структуру Циркумантарктического подвижного пояса, составной частью которого является и Фишерский комплекс. Супракрустальная серия гор Сер-Роннане, метаморфизованная в условиях от зеленосланцевой до гранулитовой фаций, состоит из различных гнейсов и плагиогнейсов, амфибол-плагиоклазовых кристаллосланцев, биотитовых амфиболитов, кальцифиров, мраморов и кварцитов. В наименее метаморфизованных породах различимы магматические (эффузивные) структуры. Для большинства метаморфитов реконструируется вулканогенный и осадочный генезис. Метаэффузивы прорваны мощными метаморфизованными жилами тоналитов, возможно, когенетичными аналогами первых (Иванов и Каменев, 1990). Позднейшие исследователи разделили супракрустальные породы гор Сер-Роннане на шесть толщ с выделением по геохимическим данным вулканитов океанического, островодужного и окраинно-материкового типа, а также аккреционных осадков. Протолиты вулканических пород были образованы до 1000 млн. лет (Osanai et al., 1992). Модельные Sm-Nd возраста TDM – источника вулканогенных пород – составляют 1100–1290 млн. лет (Shiraisi & Kagami, 1992). Предполагается, что осадочно-вулканогенные формации центральной части гор Сер-Роннане были сформированы условиях надсубдукционного режима. И это является наиболее важным сближающим признаком для двух сопоставляемых областей: Фишерской и Сер-Роннане. Следовательно, можно достаточно уверенно предполагать для некоторых областей Циркумантарктического подвижного пояса палеотектонические обстановки близкие или соответствующие конвергентным в период 1300–1100 млн. лет.
Фишерские образования по возрасту, составу и типу развития могут быть сопоставлены со среднерифейскими комплексами других континентов Гондваны, в частности, с рифейским подвижным поясом Олбани-Фрэзер (Albany-Fraser Orogen), развитом на юго-западе Австралии. Комплекс Фрэзер состоит из нескольких тектонических пластин и массивов, сложенных мафическими метаморфическими породами. Исходя из составов, реконструируются древние вулканические дуги, заложенные в энсиматических условиях, а геохимические особенности пород свидетельствуют о существенном влиянии субдукционных процессов (Nelson et al., 1995). Возраст заложения и развития пояса Олбани-Фрэзер – 1350–1140 млн. лет (Clark et al., 2000) – практически идентичен с рубежами развития Фишерского комплекса.
Фишерский комплекс также может быть довольно хорошо сопоставлен со среднерифейскими вулканогенными формациями Аравийско-Нубийской области, в меньшей степени с формациями Мавритано-Сенегальского пояса и провинции Наталь в южной Африке (Greenwood et al., 1976; Al-Shanti & Gass, 1983, Thomas et al., 1999), а также с некоторыми более молодыми структурами Казахстана, Тянь-Шаня и Забайкалья. Развитие Фишерского комплекса может отражать одну из ранних ступеней формирования суперконтинента Родиния на аккреционной стадии существования отдельных неконсолидированных блоков литосферы.