Жанры
Регистрация
Читать онлайн Как превратить персональный компьютер в измерительный комплекс бесплатно

Как превратить персональный компьютер в измерительный комплекс



Введение

Любой IBM-совместимый персональный компьютер (ПК), даже несколько лет провалявшийся в глубине шкафа за ненадобностью, может превратиться в мощный измерительный комплекс, если его снабдить одним или несколькими аналоговыми входами. Его клавиатура и экран предоставляют существенно большие возможности по сравнению с теми, которые могут дать мультиметр или осциллограф, а дисковод и принтер прекрасно подходят для регистрации любых длительных процессов. Кроме того, вычислительная мощь ПК позволяет подвергать собранные с его помощью информационные данные любой, даже очень сложной обработке. Еще несколько лет назад для превращения ПК в виртуальный измерительный прибор требовалось установить в компьютер одну или несколько сложных и дорогостоящих плат.

Подобный подход до сих пор используется в промышленности и научных лабораториях, но сегодня также можно добиться достойных результатов, просто подключив небольшие аналого-цифровые преобразователи к стандартным последовательным или параллельным портам. На рынке есть готовые изделия, предлагаемые по приемлемой цене, но подобные устройства можно собрать и самостоятельно, руководствуясь схемами и рекомендациями, приведенными в данной книге.

Благодаря библиотеке драйверов, которые предназначены для описываемых устройств, эта книга и файлы, находящиеся на сервере www.dmk.ru, позволят читателю быстро перейти к практической работе, каков бы ни был его уровень знаний в области электроники.

Для всех задач, рассматриваемых здесь, приводятся программы, готовые к применению, причем можно адаптировать их так, чтобы они отвечали иным потребностям, всего лишь изменив несколько строк на языке BASIC. Таким образом, что очень важно, виртуальный измерительный комплекс является перепрограммируемым.

Сегодня принято называть «виртуальными» все хотя бы в некоторой степени нестандартные приложения для персональных компьютеров. Много полезных вещей можно просто моделировать на хорошем цветном экране с высоким разрешением, и результат зачастую будет выглядеть «лучше, чем есть на самом деле».

Итак, на экране виртуального измерительного прибора наверняка будет представлена сложная, насыщенная картинка, на которой есть и кнопки, и различные индикаторы, и шкалы, и даже осциллографические экраны. Возможности графических интерфейсов типа Windows обеспечивают гораздо более широкую область применения, чем может иметь обычный измерительный прибор, — не говоря уже о потенциальном использовании принтеров, дисковых накопителей, а также модема, подключенного к Internet.

Собственно виртуальный прибор представляет собой более или менее сложное программное обеспечение, установленное на персональный компьютер, и некое интерфейсное устройство, позволяющее ПК получить доступ к тем физическим величинам и процессам, которые он должен будет обрабатывать. Как правило, в качестве такого интерфейса выступает аналого-цифровой преобразователь с одним или несколькими входами, возможно, снабженный устройством нормирования входного сигнала.

В принципе, можно рассчитывать на то, что виртуальный прибор предоставит своему владельцу гораздо более широкие возможности, причем по цене будет сравним с классическим измерительным прибором, имеющим тот же уровень технических характеристик.

Такой подход позволяет ограничиться минимальными затратами, если требования к измерительному комплексу не очень жесткие. Подобное решение идеально соответствует нуждам радиолюбителей, преподавателей и даже некоторых научно-исследовательских лабораторий, которые имеют дело с относительно медленными физическими процессами. Кроме того, это дает возможность вернуть к активной и полезной работе самые старые из IBM-совместимых ПК, которые, казалось бы, обречены на то, чтобы тихо пылиться в глубинах шкафов и кладовок благодаря умопомрачительной эволюции вычислительной техники (и политике компаний-производителей ПК и программного обеспечения).

1. КОНЦЕПЦИЯ ПОСТРОЕНИЯ ВИРТУАЛЬНОГО ИЗМЕРИТЕЛЬНОГО КОМПЛЕКСА

Ниже приведена концепция построения виртуального измерительного комплекса на базе персонального компьютера и рассмотрены задачи, решаемые при помощи составных частей этого комплекса.

РОЛЬ КОМПЬЮТЕРА

Компьютер (чаще всего IBM-совместимый, настольный или портативный) как центральный орган любой виртуальной измерительной системы выполняет прежде всего функции интерфейса «человек — объект измерения». Экран любого монитора дает гораздо больше возможностей для индикации, чем экран осциллографа (будь тот даже запоминающим), и, разумеется, экран монитора гораздо больше, чем дисплей мультиметра. Клавиатура и особенно мышь гораздо удобнее в работе, чем кнопки, а принтер — даже простейший — предоставляет неоценимые возможности для вывода результатов на бумагу. Кроме того, любой ПК, пусть даже очень «древний», обладает большой вычислительной мощностью, которую можно использовать для того, чтобы применить различные виды обработки результатов измерений: нормирование (приведение шкалы), линеаризацию, временную привязку, вычисление среднего, статистику и т. д. Наконец, дисковый накопитель будет очень удобен для накопления больших объемов данных с целью их последующей обработки, архивирования или передачи по линиям связи с помощью модема.

РОЛЬ ИНТЕРФЕЙСНЫХ УСТРОЙСТВ

Измерение физических параметров, таких как напряжение, ток, температура или давление, предполагает точную оценку аналоговых величин. Компьютер же работает исключительно с дискретными величинами. Отсюда ясно, что процесс превращения ПК в виртуальный измерительный прибор предполагает подключение аналого-цифрового преобразователя (АЦП). АЦП может общаться с компьютером либо через последовательный или параллельный порты, либо непосредственно через шины, если аналого-цифровой преобразователь выполнен в виде платы расширения или карты PCMCIA.

Первый вариант гарантирует максимальную простоту и дешевизну, а при использовании второго можно получить отличные характеристики, но только за счет сложности и высокой цены. Интерфейсное устройство также может выполнять и другие необходимые функции, например, гальваническую развязку источников сигналов от цепей ПК, согласование сигналов, формируемых некоторыми типами датчиков, по импедансу, напряжению, полярности и т. д., а также коммутацию нескольких входных каналов.

РОЛЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Область применения виртуального прибора практически полностью определяется характеристиками программного обеспечения, в то время как характеристики интерфейсных устройств в большинстве случаев вполне понятны пользователю.

Промышленные изделия подобного рода почти всегда используются при работе с более или менее развитым графическим интерфейсом (кстати, не всегда под Windows), позволяющим выбрать тот или иной режим с помощью клавиатуры или мыши через различные меню (рис. 1.1).

Рис 1.1. Пример экранных меню виртуального измерительного прибора

Как будет показано в дальнейшем, очень удобно создавать маленькие программы, специально предназначенные для выполнения той или иной практической задачи. Часто они пишутся на таком популярном и простом языке, как BASIC. Небольшое структурирование этих программ позволит применять и промышленные интерфейсные устройства, и устройства, самостоятельно собранные из отдельных элементов, путем простой переустановки соответствующего драйвера. Ниже будет проведено сравнение обоих вариантов, благодаря чему читатели смогут выбрать решение, наиболее соответствующее их личным потребностям, техническим и финансовым возможностям, и, наконец, талантам в области программирования.

Помимо выполнения программ сбора данных, пользователь виртуального измерительного прибора сможет часто экспортировать результаты измерений в более развитые приложения, например, электронные таблицы или программы построения диаграмм. Эти офисные приложения делают понятными самые абстрактные записи или массивы данных, выделяя в них незаметные на первый взгляд тенденции или взаимные связи. И, конечно, файлы цифровых данных, полученные при записи измеряемых физических параметров, могут передаваться по линиям связи с использованием модема, в частности, по электронной почте и через Internet.

ТОЧНОСТЬ И БЫСТРОДЕЙСТВИЕ

При сравнении между реальными и виртуальными приборами, помимо предоставляемых возможностей и режимов работы, надо также принимать во внимание и их основные характеристики, а именно точность и быстродействие.

Точность виртуального прибора определяется не только количеством цифр после запятой, которое выводится на экран управляющей программой. Кстати, эти цифры могут быть ошибочными, если не приняты некоторые меры метрологического характера.

Одним из основных критериев является разрядность аналого-цифрового преобразователя. Этот параметр определяет степень разрешения при измерениях, то есть ту наименьшую разницу между двумя соседними значениями, которую «чувствует» измерительный прибор. К примеру, восьмиразрядный АЦП способен формировать 28, или 256 различных значений выходного сигнала (кода). Если его полная шкала составляет 5 В, он сможет различить два уровня входного напряжения, отличающиеся примерно на 20 мВ; это соответствует чувствительности хорошего стрелочного гальванометра

Дешевые виртуальные приборы чаще всего ограничены по скорости измерений (от нескольких десятков до нескольких десятков тысяч отчетов в секунду). Это более чем достаточно, например, для регистрации кривых заряда или разряда аккумуляторов, а также для замеров метеорологических параметров. Однако этого не всегда достаточно для правильного отображения формы звукового сигнала на экране виртуального осциллографа или для выполнения серьезного спектрального анализа.

Пользователь подобных приборов всегда должен четко представлять возможности своего оборудования и программного обеспечения (ПО) и учитывать их, прежде чем делать поспешные выводы из полученных результатов.

2. АНАЛОГО-ЦИФРОВОЕ ПРЕОБРАЗОВАНИЕ СИГНАЛОВ

Существует множество способов для преобразования аналогового сигнала — электрического напряжения или тока, изменяющегося плавно и непрерывно — в поток цифровых данных, представляющий собой дискретную кодированную последовательность импульсов. На практике чаще всего используется аналого-цифровое преобразование с помощью импульсно-кодовой модуляции (ИКМ).

В этом случае процесс начинается с представления непрерывного сигнала в виде последовательности отсчетов, которые берутся через определенный промежуток времени (иначе говоря, с определенной частотой дискретизации). Эту функцию выполняет схема, называемая устройством выборки-хранения. Запоминая мгновенное значение входного сигнала (чаще всего на конденсаторе), это устройство обеспечивает сохранение величины взятого отсчета на время процесса оцифровки. Процесс оцифровки состоит в представлении амплитуды каждого отсчета в форме двоичного кодового слова с определенным количеством разрядов. Способ, используемый для выполнения такой оцифровки, и определяет возможности, сложность и цену аналого-цифрового преобразователя.

В семидесятых годах первые АЦП представляли собой большие печатные платы или, в лучшем случае, большие гибридные модули, которые обычно очень дорого стоили. Полупроводниковые интегральные микросхемы АЦП, пришедшие им на смену, тоже поначалу были довольно дороги, причем выпускались они в неудобных корпусах с большим количеством выводов. Даже теперь это остается актуальным, но только для некоторых типов АЦП с очень высокими характеристиками (разрешение, быстродействие, число входов); гораздо более простые и дешевые модели появились лишь несколько лет назад.

НОВОЕ ПОКОЛЕНИЕ АЦП

Необходимость встраивать высококачественные аналого-цифровые преобразователи в изделия и товары широкого потребления (электробытовые приборы, автомобили, средства телекоммуникации и т. п.), которые всё в большей степени основываются на цифровых технологиях, заставила изготовителей полупроводниковых элементов применить новые подходы к решению проблемы.

В настоящее время за цену менее двадцати долларов можно купить АЦП в корпусе с восемью выводами, причем возможности этих преобразователей могут быть оценены довольно высоко. Их используют, в частности, для работы с самыми современными компонентами — RISC-микроконтроллерами и цифровыми сигнальными процессорами (ЦСП).

Главная особенность таких АЦП состоит в организации управления по одно- или двухпроводной последовательной шине (SPI, Microwire, PC и т. п.), а не через параллельный интерфейс, требующий наличия одного вывода микросхемы на каждый разряд шины управления. Конечно, такой способ передачи битов данных — один за другим по одному проводу — ограничивает скорость обмена информацией, хотя и здесь можно достичь скорости передачи данных порядка 1 Мбит/сек. На практике, с учетом свойств и возможностей схем дискретизации и квантования, не стоит рассчитывать на преодоление барьера в несколько десятков тысяч измерений в секунду, что в среднем соответствует частоте дискретизации 20 кГц.

Таким образом, эти электронные компоненты не стоит сравнивать со сверхскоростными АЦП типа «flash» или «videos», но они, тем не менее, относятся к классу быстродействующих АЦП. Поэтому при разрядности от 8 до 12 бит они прекрасно подходят для решения большинства задач в области создания виртуальных измерительных приборов.

На рис. 2.1 приведена структурная схема стандартных последовательных АЦП, выполненных в корпусах с восемью выводами.

Рис 2.1. Структурная схема последовательного АЦП

Логическое управляющее устройство со встроенным тактовым генератором управляет работой схемы преобразования, функционирующей по принципу последовательного приближения. Этот принцип состоит в постепенном пошаговом накоплении в промежуточном регистре данных двоичного кодового слова, соответствующего соотношению входного аналогового напряжения (разности между уровнями напряжения на дифференциальных входах ANALOG+IN и ANALOG-IN) и опорного напряжения (разности между уровнями напряжения на дифференциальных входах REF+ и REF-).

Цикл преобразования начинается с фиксации уровня входного аналогового напряжения в устройстве выборки-хранения, а затем преобразователь начинает формировать содержимое регистра. Процесс накопления кодового слова занимает некоторое время, называемое временем преобразования.

На практике как минимум один из выводов ANALOG-IN или REF- технологически соединен с общим проводом (GND), вследствие чего лишь некоторые модели последовательных АЦП могут работать по схеме с дифференциальным входом.

По окончании процесса преобразования селектор данных, расположенный перед выходным каскадом, начинает последовательно выбирать биты информации, содержащиеся в регистре данных, и затем также последовательно подает их на выход DATA OUT. Частота выборки и формирования выходных импульсов определяется внешним тактовым сигналом I/O CLOCK.

Для правильного функционирования АЦП необходимо наличие некоторой внешней управляющей системы, которая должна формировать последовательности синхронизирующих сигналов.

В большинстве случаев аналого-цифровое преобразование начинается в момент подачи соответствующего сигнала на вывод /CS (выбор кристалла). Само по себе преобразование выполняется за несколько десятков микросекунд. После этого необходимо подать нужное количество тактовых импульсов на вывод I/O CLOCK, чтобы вывести результат преобразования через вывод DATA OUT. Хотя величина тактовой частоты вывода данных для некоторых моделей имеет ограничение снизу (например, 100 кГц), она все-таки намного ниже, чем внутренняя тактовая частота преобразования. В большинстве случаев скорость последовательного вывода информации зависит только от скорости, с которой управляющая система может обрабатывать поступающие биты данных.

Работа схемы АЦП последовательного приближения (рис. 2.2) заслуживает более подробного описания, так как именно благодаря ей появился этот тип компонентов.

Рис 2.2. Функциональная схема АЦП последовательного приближения с коммутируемой матрицей конденсаторов

Основой функциональной схемы является коммутируемая матрица конденсаторов. Значение каждого бита данных определяется пороговым детектором в зависимости от величины заряда каждого из весовых конденсаторов, составляющих матрицу АЦП. Рис. 2.2 соответствует десятиразрядному АЦП. По рисунку видно, что число конденсаторов, содержащихся в матрице, должно быть на единицу больше, чем число разрядов. Относительный вес каждой цепи матрицы конденсаторов определяется в соответствии с последовательностью степеней числа два, т. е. от 1 до 512 для десятиразрядного АЦП.

В начале цикла преобразования логическое управляющее устройство замыкает все ключи ST и Sc, вследствие чего все конденсаторы одновременно заряжаются до уровня входного напряжения Vi (режим выборки). Затем все ключи размыкаются (режим хранения), и пороговый детектор начинает формировать биты данных, сравнивая напряжение REF- с напряжениями на каждом из конденсаторов матрицы.

Первым обрабатывается напряжение на конденсаторе, установленном в цепи матрицы с максимальным весом (в данном случае — вес 512). Для этого узел 512 подключается к источнику напряжения REF+, а все остальные узлы подключаются к REF-. Если напряжение в суммирующей точке больше порога срабатывания детектора, примерно равного VCC/2, то бит данных устанавливается в нулевое состояние, а узел 512 подключается к источнику напряжения REF-. В противном случае, если напряжение в суммирующей точке меньше порога, бит данных устанавливается в единичное состояние, а узел 512 подключается к источнику REF+ до завершения процесса преобразования. Та же последовательность операций повторяется для цепи с весом 256, потом с весом 128 — и так до тех пор, пока не будет определено значение каждого разряда регистр» данных.

Следует помнить, что n-разрядный АЦП может сформировать лишь 2n различных двоичных кодовых слов (256 для 8 разрядов, 1024 для 10 разрядов, 4096 для 12 разрядов и т. д.). Разница между двумя соседними кодовыми словами соответствует аналоговому весу младшего значащего разряда (МЗР, или LSB в иностранной литературе). Изменение входного напряжения на величину, меньшую по сравнению с этой разницей, может быть не отражено в выходных данных. Некоторые преобразователи, кроме того, вносят дополнительную погрешность и формируют результат с точностью до одного или даже до двух МЗР. Такая дискретность результатов преобразования является следствием характерной для АЦП передаточной характеристики в виде «ступеньки» (рис. 2.3 (а)).

Совершенно очевидно, что в этом случае, так же как при любом другом процессе аналого-цифрового преобразования, полученный результат содержит некоторую ошибку, называемую ошибкой квантования. Причины ее возникновения поясняются в графике, приведенном на рис. 2.3 (б).

Ошибка квантования возникает в результате замены истинной величины отсчета входного сигнала ее дискретным эквивалентом в виде выходного кода и определяется как разность между графиками ступенчатой передаточной характеристики и идеальной прямой. Максимальная величина ошибки для передаточной характеристики, приведенной на рис. 2.3 (а), равна половине величины шага квантования (половине аналогового веса МЗР).

Рис. 2.3. Передаточная характеристике АЦП и таблица кодов преобразования

Важно учитывать эту особенность, которая, если взять для примера 8-разрядный АЦП с полной шкалой 5 В, проявляется в неизбежной погрешности преобразования величиной до 20 мВ. И хотя эта величина составляет лишь 0,4 %, ее следует принимать во внимание.

8-РАЗРЯДНЫЙ АЦП С ПОСЛЕДОВАТЕЛЬНЫМ ИНТЕРФЕЙСОМ

8-разрядные последовательные АЦП являются и самыми дешевыми, и самыми простыми в применении. При условии, что они работают в последней трети своей полной шкалы (что можно обеспечить при помощи предварительного усилителя со смещением), их разрешение с точностью 1/256 вполне соответствует точности, требуемой во многих приложениях виртуального измерительного комплекса.

Компоненты такого типа предлагают многие производители, но до какой-либо стандартизации и унификации в этой области еще очень далеко. Расположение выводов и протоколы связи у разных типов подобных АЦП различны. Возможно, изготовители делают это для того, чтобы затруднить замену компонентов на изделия конкурентов.

8-разрядный последовательный АЦП, который будет использоваться в примерах, был выбран, с одной стороны, ввиду его широкого распространения и вполне приемлемой цены, а с другой стороны, ввиду того, что существуют 10- и 12-разрядные модели, полностью совместимые с ним по расположению выводов. При случае это может упростить проблему модернизации печатных плат.

На рис. 2.4 приведена схема расположения выводов АЦП TLC 549 фирмы Texas Instruments. Именно эта модель будет рассмотрена ниже в ее практическом применении.

Рис 2.4. Расположение выводов аналого-цифрового преобразователя TLC 549

Этот АЦП имеет только один аналоговый вход (ANALOG IN) и два входа для подключения опорного напряжения (REF+ и REF-). Вторым аналоговым входом можно считать общий вывод GND. Если вывод REF- также подключить к общему проводу, АЦП будет формировать байт выходного кода, равный 00000000, при нулевом напряжении на аналоговом входе, и 11111111 — при входном напряжении, равном опорному напряжению, приложенному к выводу REF+.

Протокол связи этого АЦП достаточно прост, его временные диаграммы приведены на рис. 2.5.

Рис. 2.5. Протокол связи АЦП TLC 549

При переходе сигнала на выводе /CS от высокого к низкому уровню в регистр вывода данных помещается результат предыдущего преобразования. Поэтому рекомендуется выполнить «пустое преобразование» сразу после включения устройства или в случае выполнения двух преобразований, разделенных достаточно продолжительным интервалом времени.

Первое считанное значение выходного кода в этих случаях будет неверным. Следующее преобразование будет правильным, оно начнется по первому переднему фронту импульса, поступившего на вывод /CS после низкого уровня. Важно, чтобы на выводе /CS был высокий уровень в течение всего времени преобразования, но, поскольку этот процесс длится всего несколько десятков микросекунд, данное условие можно считать автоматически выполняемым, если АЦП управляется процессором с программой, написанной на существенно менее быстром языке, чем Assembler.

Каждый бит выходных данных может быть считан на выводе DATA OUT, причем биты выводятся старшими разрядами вперед по переднему фронту импульсов на выводе I/O CLOCK.

Одно из преимуществ этого АЦП состоит в том, что он может работать с любой частотой дискретизации, определяемой управляющей системой — от одного измерения за несколько часов до более двадцати тысяч измерений в секунду.

10-РАЗРЯДНЫЙ АЦП С ПОСЛЕДОВАТЕЛЬНЫМ ИНТЕРФЕЙСОМ

Разрешение в 10 бит — это своеобразный компромисс между 8- и 12-разрядными устройствами, позволяющий устранить проблемы, связанные с недостаточной в некоторых случаях точностью, равно как и со сложностью в изготовлении и настройке.

Аналого-цифровой преобразователь TLC 1549 производства Texas Instruments удобен тем, что он совместим по расположению выводов с TLC 549 (рис. 2.4), но этот компонент допускает шесть различных протоколов связи (три «быстрых» и три «медленных»).

Протокол связи, приведенный на рис. 2.6, очень похож на протокол TLC 549, с тем лишь отличием, что здесь используются десять битов данных вместо восьми.

Рис. 2.6. Протокол связи АЦП TLC 1549

Прямой конкурент АЦП TLC 1549 — аналого-цифровой преобразователь МАХ 1243 производства компании MAXIM-имеет совершенно другое расположение выводов (рис. 2.7).

Рис. 2.7. Расположение выводов АЦП МАХ 1243

Помимо своих отличных характеристик, он интересен тем, что принадлежит к семейству полностью взаимозаменяемых АЦП, которое включает 12-разрядную версию МАХ 1241, а также тем, что с помощью простой программы его можно легко переключить в 8-разрядный режим.

Такое же расположение выводов имеют и более ранние изделия компании MAXIM (МАХ 187, МАХ 189), и современные модели (МАХ 1240, МАХ 1242).

Некоторые из этих АЦП снабжены встроенным источником опорного напряжения, что дает дополнительные преимущества при расширении возможностей устройств, рассматриваемых в главе 4 этой книги.

Существует два варианта протокола связи, используемого при работе с АЦП МАХ 1243. Они представлены на рис. 2.8.

Рис 2.8. Протокол связи АЦП МАХ 1243

Первый вариант (рис. 2.8 (а)) в основном предназначен для применения в устройствах, которые используют протокол, строго соответствующий стандарту QSPI для некоторых типов последовательных интерфейсов микроконтроллеров. Он отличается наличием двух дополнительных бит S0 и S1 и использованием дополнительных нулей, выводимых при получении более 11 тактовых импульсов. Протокол, совместимый с SPI и Microwire (рис. 2.8 (б)), в большей степени соответствует нашим нуждам, так как работает с блоками по 10 бит.

Следует учитывать, что в начале кодовой посылки присутствует «единичный» бит, в некотором роде стартовый; его нужно исключать перед обработкой, например, подав один дополнительный тактовый импульс.

В отличие от вышеописанных компонентов, АЦП МАХ 1243 дол- жен выполнить преобразование перед тем, как вывести слово данных. Следовательно, после подачи уровня логического нуля на вывод /CS (начало преобразования) надо ждать не менее 7,5 мкс или дожидаться перехода сигнала на выводе DOUT в состояние логической единицы, перед тем как подать положительный перепад напряжения (фронт импульса) на вывод SCLK для начала вывода данных. Преимущество такого способа работы состоит в том, что получаемый результат соответствует текущему циклу преобразования, а не предыдущему, как у вышеописанных устройств. Кроме того, при выводе результата можно использовать только восемь старших значащих разрядов, иначе говоря, использовать МАХ 1243 в 8 разрядном режиме очень высокой точности Для этого достаточно прекратить передачу данных после бита В2, подав на вывод /CS сигнал логической единицы.

12-РАЗРЯДНЫЙ АЦП С ПОСЛЕДОВАТЕЛЬНЫМ ИНТЕРФЕЙСОМ

Аналого-цифровой преобразователь МАХ 1241, полностью аналогичный АЦП МАХ 1243 по расположению выводов, является 12-разрядной версией, которая использует схожий с протоколом, представленным на рис. 2.8 (б). Полностью протокол связи АЦП МАХ 1241 приведен на рис. 2.9.

Рис. 2.9. Протокол связи АЦП МАХ 1241

Среди полупроводниковых компонентов компаний Linear Technology и Вurr-Brown можно найти 12-разрядные АЦП, которые по расположению выводов схожи с АЦП TLC 549 и TLC 1549. Так приборы LTC 1286 и ADS 1286, практически аналогичные друг другу (за исключением некоторых частностей), отличаются от TLC 549 и TLC 1549 по нескольким основным пунктам. Прежде всего, они имеют дифференциальные аналоговые входы +IN и — IN (рис. 2.10) и однополярный вход опорного напряжения VREF.

Рис 2.10. Расположение выводов АЦП LTC 1286 и ADS 1286

При соединении вывода — IN с общим проводом GND можно получить конфигурацию, совместимую с 8- и 10-разрядными преобразователями. Ее схема приведена на рис. 2.11.

Рис 2.11. Универсальная схема включения АЦП

Указанная аналогия на уровне подключения микросхем не распространяется на используемые протоколы связи АЦП. Рис. 2.12 демонстрирует различия этих протоколов. Для вывода информации вначале следует подать два «пустых» тактовых импульса вместо одного, и, кроме того, можно считывать выходные данные как старшими, так и младшими разрядами вперед.

Рис. 2.12. Протокол связи АЦП 1286

Компания Linear Technology производит компонент LTC 1292, родственный вышеозначенным образцам. У него есть несколько важных отличий, в частности, совершенно непохожее расположение выводов (рис. 2.13).

Рис 2.13. Расположение выводов АЦП LTC 1292

Микросхеме LTC 1292 стоит посвятить несколько дополнительных строк, так как она используется в некоторых АЦП промышленного изготовления, для которых удобно писать специальные программы.

Протокол связи LTC 1292 приведен на рис. 2.14.

Рис. 2.14. Протокол связи АЦП LTC 1292

Он очень похож на протокол LTC 1286, но только с виду… В отличие от LTC 1286, y LTC1292 ограничена минимальная тактовая частота вывода информации на уровне 100 кГц. Это не вызывает трудностей при работе с программами на языках Assembler или С. но гораздо сложнее обстоит дело в случае работы с программами на языке BASIC или даже на языке PASCAL, работающих на медленном процессоре. Конечно, у нижнего предела тактовой частоты есть определенные допуски на практическое использование, но все же требуется осторожность при оценке точности получаемых результатов.

НАДО ЛИ ВЫХОДИТЬ ЗА ПРЕДЕЛЫ 12 РАЗРЯДОВ?

Попытаемся ответить на вопрос о том, насколько оправдано применение аналого-цифровых преобразователей с разрядностью, большей 12, для решения относительно простых задач при построении виртуального измерительного комплекса.

В промышленности и науке широко применяются 16-, 24-разрядные устройства и даже устройства с большей разрядностью. Оптимальная эксплуатация таких АЦП с высоким разрешением (0,015 % и 6 ppm = 6·10-6[1], соответственно) предполагает особую аккуратность в вопросах, касающихся высочайшей точности и калибровки всей измерительной цепи — от датчиков до устройств индикации и печати. В любом случае это предполагает большие затраты, что немаловажно.

Для того чтобы оценить ситуацию, следует принять во внимание, что по ширине листа формата А4 даже при разрешении 600 dpi лазерный принтер сможет разместить только 7000 отдельных точек, а хороший графический экран с трудом вмещает 800 точек по вертикали. Следовательно, нельзя и помышлять о том, чтобы с помощью этих устройств графически точно воспроизводить результаты измерений, сделанных шестнадцатиразрядными приборами, в десятки и сотни раз более точными. Исключение составляют случаи вывода особых участков с большим увеличением. В связи с этим в намерения автора не входило рассматривать в данной книге практические конструкции АЦП с разрядностью, большей 12, которые к тому же крайне редко выпускаются в корпусах с восемью выводами и снабжены последовательным интерфейсом.

Основное внимание в дальнейшем будет обращено на то, как добиться удачных результатов (зачастую самыми простыми способами), используя 8- или 10-разрядные АЦП; для самых взыскательных читателей приводятся и сведения о 12-разрядных аналого-цифровых преобразователях.

ИСТОЧНИКИ ОПОРНОГО НАПРЯЖЕНИЯ

Традиционным элементом стабилизаторов напряжения является стабилитрон, но ему присущи многие недостатки, не позволяющие использовать его в качестве точного источника опорного напряжения даже для 8-разрядного аналого-цифрового преобразователя.

Для тех направлений схемотохники, где требуется высокая точность результатов, были разработаны гораздо более удобные компоненты — интегральные источники опорного напряжения.

На рис. 2.15 приведена классическая вольт-амперная характеристика стабилитрона (диода Зенера). Напомним, что при прямом смещении стабилитрон ведет себя как обычный диод, а при большом обратном смещении проявляется эффект Зенера.

Рис. 2.15. Вольт-амперная характеристика стабилитрона

Эффект Зенера, или Зенеровский пробой (разновидность лавинного), — это явление, в результате которого диод становится проводящим при смещении р-n перехода в обратном направлении. Пороговое значение напряжения смещения Vz, при котором данный эффект становится возможным, называется напряжением Зенера или напряжением стабилизации.

Анализ вольт-амперной характеристики стабилитрона показывает, что, с одной стороны, ее излом в точке Vz не очень резкий, а с другой стороны, правая ветвь характеристики не является вертикальной. Если к этому добавить, что напряжение Vz существенно зависит от температуры и имеет заметную шумовую составляющую, станет очевидно, что стабилитрон нельзя отнести к прецизионным компонентам.

Таким образом, стабилитрон прекрасно подходит для любых задач, связанных со стабилизацией или регулированием напряжения питания, но его нельзя использовать как эталон в измерительных приборах или в АЦП. Естественно, существуют различные способы улучшения характеристик стабилитрона. Например, при увеличении обратного (рабочего) тока рабочая точка удаляется от излома характеристики; это повышает точность напряжения Vz, но незначительно.

Для большинства маломощных стабилитронов рабочий ток составляет в среднем от нескольких единиц до нескольких десятков миллиампер, что существенно превышает ток потребления АЦП.

На практике широко применяется схема стабилитрона с термокомпенсацией, в которой последовательно со стабилитроном включен кремниевый диод в прямом направлении. Их температурные коэффициенты близки по величине, но противоположны по знаку; в результате флюктуации тока обоих диодов, вызванные изменениями температуры, компенсируются, однако и этого по-прежнему недостаточно…

Некоторые двухвыводные интегральные схемы могут легко заменить стабилитроны, при этом они обеспечивают существенно лучшие характеристики. Одна из самых старых моделей — это интегральный стабилитрон ТАА 550, который выпускался в корпусе типа ТО 18 с двумя выводами и широко использовался для стабилизации напряжения систем управления варикапами в телевизорах (от 31 до 35 В при токе до 5 мА). Для получения столь высокого напряжения стабилизации в нем было применено несколько одинаковых последовательно включенных каскадов.

Компонент LM 113 имеет практически идентичную конструкцию, но его номинальное напряжение составляет только 1,22 В с точностью 1 %, 2 % или 5 % в зависимости от исполнения, определяемого буквой, стоящей после названия. Эта величина напряжения основана на физических свойствах кремния (знаменитая «ширина запрещенной зоны») и легко повторяема в серийном производстве.

Рекомендуемый рабочий ток для этого интегрального стабилитрона составляет от 0,5 мА до 20 мА.

Компоненты подобного типа выпускают многие изготовители — в частности, можно назвать модели ICL 8069 фирмы Intersil, AD 589 фирмы Analog Devices и др. Интегральные источники опорного напряжения (ИОН) серий LM 185, LM 285 и LM 385 основаны на том же физическом принципе, существуют также версии с напряжением 2,5 В с точностью 1 % и 2 %. Некоторые источники выполняются в корпусах с тремя выводами, при этом дополнительный третий вывод позволяет, при необходимости, регулировать параметры стабилизаторов с помощью внешнего делителя на резисторах.

Указанные источники опорного напряжения обладают следующими основными характеристиками:

Рабочий ток… 20 мкА — 20 мА

Динамическое сопротивление (на частоте 20 Гц, при токе 100 мкА)… 1 Ом

ЭДС шума (при токе 100 мкА, в полосе 10 Гц — 10 кГц)… 120 мкВ

Долговременная нестабильность (при токе 100 мкА и температуре 25 ±0,1 °C)… 20 ppm за 1000 час

Температурный коэффициент (при токе 100 мкА)… 150 ррт/°С

Чуть более дорогие, но и более стабильные устройства типа LT 1009 компании Linear Technology и REF 25 Z компании GEC Plessey также формируют опорное напряжение 2,5 В, но с точностью, соответственно, 0,2 % и 1 %.

Отметим также некоторые компоненты, родственные ИОН, но имеющие вполне определенный температурный коэффициент. Это, например, LM 135, LM 235 и LM 335, выходное напряжение которых меняется точно на 10 мВ при изменении температуры окружающей среды на один градус. В данной книге эти компоненты будут упоминаться при описании виртуальных приборов для измерения температуры (см. главу 6).

ОТНОСИТЕЛЬНЫЕ ИЗМЕРЕНИЯ

Итак, очевидно, что аналого-цифровой преобразователь нуждается в очень точном и стабильном источнике опорного напряжения, относительно которого схема преобразования оценивает уровень входного напряжения. В тех случаях, когда опорное напряжение выступает в качестве эталона, принято говорить об абсолютном преобразовании.

Однако бывают случаи, когда какая-либо измеряемая величина может быть определена не в виде одного напряжения, а в виде соотношения двух напряжений. Самым очевидным примером является потенциометрический датчик, но можно представить также струнные датчики, магниторезисторы, датчики температуры или давления, или, в более широком плане, любые способы измерений, использующие изменение сопротивления.

Напряжение на АЦП в таком случае подастся с резисторного делителя, питаемого от источника опорного напряжения. При этом достаточно использовать один источник опорного напряжения и для резисторного делителя АЦП, и для датчика, чтобы автоматически снять влияние погрешности или дрейфа опорного напряжения.

Таким образом можно очень точно измерять отношение напряжений в узлах резистивного моста, даже если опорное напряжение не очень стабильно. В этом случае принято говорить об относительном преобразовании.

На рис. 2.16 показан простой пример относительных измерений, а именно — определение положения оси потенциометра, отражающего, скажем, положение флюгера, пера руля или створки шлюза.

Рис. 2.16. Пример схемы относительного преобразования

Опорное напряжение формируется непосредственно из напряжения питания VCC, обычно стабилизированного и равного 5 В. Представим, что в схеме R4 = R1, a R3 = R2, или что отношения R1/R2 и R4/R3 одинаковы. Когда подвижный контакт потенциометра находится в верхнем положении, на входах ANALOG+IN и REF+ будет одинаковое напряжение, и преобразователь сформирует двоичный код, соответствующий его полной шкале (эквивалент числа 255 для 8-разрядного преобразователя). В нижнем положении подвижного контакта потенциометра на нем будет нулевое напряжение, и АЦП, естественно, сформирует код, соответствующий нулевой входной величине. Результат измерения между указанными крайними точками будет очень точно отражать угловое положение подвижного контакта, при условии, что этот потенциометр — прецизионный и имеет линейную характеристику.

Если напряжение питания уменьшится до 4,5 В или увеличится до 5,5 В (что соответствует десятипроцентной погрешности!), это изменение повлияет на потенциалы и на измерительном, и на опорном входах преобразователя, а разность между ними останется прежней.

Данная схема позволяет ввести поправочные коэффициенты путем изменения величины сопротивления резистора R4. Это необходимо, в частности, из тех соображений, что механический ход подвижного контакта (угол поворота оси) обычного потенциометра меньше 360 градусов.

ПРЕОБРАЗОВАНИЕ ОТРИЦАТЕЛЬНЫХ ВХОДНЫХ НАПРЯЖЕНИЙ

Большинство простых аналого-цифровых преобразователей предназначены для работы с входными напряжениями в диапазоне от 0 В до величины, меньшей или равной опорному напряжению, которое, в свою очередь, меньше или равно напряжению питания.

Всякое входное напряжение, меньшее напряжения на входе REF-, преобразуется на выходе в код, соответствующий нулю, а напряжение, большее напряжения на входе REF+, определяется как равное напряжению полной шкалы АЦП.

Аналого-цифровые преобразователи, способные обрабатывать отрицательное входное напряжение, формируют на выходе результат преобразования «со знаком», т. е. обычные двоичные слова, старший разряд которых указывает полярность.

8-разрядный преобразователь «со знаком» будет в таком случае иметь только 7 разрядов для представления абсолютной величины измеряемого значения, а этого может оказаться недостаточно (всего 128 возможных уровней квантования).

В случае, когда измеряемое входное напряжение всегда является отрицательной величиной, самое простое решение проблемы заключается в перемене мест входного и общего выводов АЦП, так же, как это делается со щупами любого стрелочного тестера. Но таким образом нельзя избежать проблемы переменного входного напряжения с нулевым средним значением, которое интересно обрабатывать в таких приложениях как виртуальный осциллограф, анализатор спектра или же с целью измерения истинных эффективных значений (среднеквадратичное или RMS).

Простейший выход состоит в добавлении к входному напряжению постоянного напряжения смещения; иначе говоря, надо сместить «ноль» на величину, не меньшую пикового значения измеряемого сигнала. В некоторых случаях это можно сделать, последовательно подключив батарейку, но более разумно применить суммирующую схему на базе операционного усилителя.

Если амплитуда измеряемого сигнала мала по сравнению с полной шкалой АЦП, можно ввести в схему дополнительный входной усилитель. Этот случай будет рассмотрен в главе 6.

УСТРОЙСТВА НОРМИРОВАНИЯ СИГНАЛОВ

Обычно устройством нормирования сигналов называют любую схему, включенную на входе АЦП и предназначенную для согласования его характеристик с характеристиками и параметрами источника измеряемых сигналов. Функции таких устройств могут быть гораздо сложнее, чем простой сдвиг уровня или дополнительное усиление, которые требуются в примерах, представленных на рис. 2.17 (изменение напряжения V в зависимости от значения физической величины G).

Рис 2.17. Два примера линейных зависимостей

Нередко устройство нормирования должно выполнять преобразование «ток-напряжение», одно- или двухполупериодное выпрямление, фильтрацию или даже преобразование изменений емкости или индуктивности в изменение постоянного напряжения. Так, термопары требуют компенсации эффекта «холодного спая», а при работе с мостовыми датчиками необходимо наличие дифференциального входа. Некоторые датчики с нелинейными характеристиками (например, терморезисторы), два примера которых показаны на рис. 2.18, требуют линеаризации по достаточно сложным математическим законам.

Рис. 2.18. Два примера нелинейных зависимостей

В таком случае обычно используют как аналоговую коррекцию, выполняемую схемами в устройстве нормирования, так и цифровую коррекцию, выполняемую программно в процессе обработки выходных данных АЦП.

3. ПРОМЫШЛЕННЫЕ ИЗДЕЛИЯ

Вполне возможно превратить IBM-совместимый ПК в виртуальный измерительный прибор, не сделав ни одной печатной платы и не написав ни одной строчки программы. Существуют готовые решения «под ключ», стоящие от нескольких десятков до нескольких тысяч долларов в зависимости от предлагаемых возможностей. Самые лучшие из них далеко превосходят возможности обычных измерительных приборов, а самые экономичные решения часто удивляют широтой их потенциальных приложений.

ИНТЕРФЕЙСНЫЕ ПЛАТЫ ВНУТРЕННЕГО ИСПОЛНЕНИЯ

Устройства, выполненные на платах, устанавливаемых в слоты материнской платы ПК, позволяют достичь в реальном масштабе времени частоты дискретизации в несколько десятков мегагерц и разрядности 16 или 24, причем часто для нескольких входных каналов одновременно.

Эти устройства жестко подключены к шине центрального процессора и могут использовать режим прямого доступа к памяти (ПДП — DMA), а следовательно, полностью использовать возможности самых быстрых процессоров. Лучшие модели даже могут быть снабжены буферной памятью объемом до нескольких мегабайт, позволяющей регистрировать самые быстрые процессы в реальном масштабе времени.

Компания National Instruments всегда была пионером в данной сфере и сейчас по-прежнему занимает лидирующие позиции в этой области рынка, ставшей в настоящее время полем жесточайшей конкуренции.

Традиционными потребителями указанной категории изделий в развитых странах являются промышленные отрасли и научные организации, иначе говоря, потребители, которые не экономят на средствах, позволяющих получить метрологически безупречные результаты.

ВНЕШНИЕ ИНТЕРФЕЙСНЫЕ УСТРОЙСТВА

В случаях, когда быстродействие не имеет первостепенного значения, элегантное и экономичное решение представляют внешние интерфейсные устройства, подключаемые к ПК через последовательный или параллельный порты. К этому типу интерфейсов можно отнести как миниатюрный АЦП. расположенный в корпусе разъема DB25, так и классический мультиметр, снабженный разъемом RS232, а также настольный прибор, имеющий на корпусе несколько разъемов и органов управления.

Фирма National Instruments предлагает оригинальное решение, находящееся посередине между двумя указанными вариантами и прекрасно подходящее для портативных ПК. Виртуальный мультиметр, разработанный этой фирмой, выполнен в виде карты PCMCIA, установить которую так же просто, как вставить дискету в дисковод, хотя ее параметры не уступают многим одноканальным платам, предназначенным для внутреннего монтажа. Диалоговое окно мультиметра показано на рис. 3.1.

Рис. 3.1. Диалоговое окно виртуального мультиметра фирма Nationol Instruments

АНАЛОГО-ЦИФРОВЫЕ ПРЕОБРАЗОВАТЕЛИ ADC 10 И ADC 12

Среди моделей, предлагаемых в виде внешних интерфейсов, миниатюрные аналого-цифровые преобразователи ADC 10 и ADC 12 компании PICO Technology пользуются большой популярностью. Причиной тому — исключительная простота их применения и доступная цена. ADC 10 и ADC 12 представляют замечательную возможность добавления одного или нескольких аналоговых входов к любому ПК.

Программное обеспечение, поставляемое в комплекте с данными АЦП, сразу превращает компьютер в цифровой мультиметр, запоминающий осциллограф, анализатор спектра и даже в ленточный регистратор (самописец), причем все эти виртуальные приборы работают с сигналами в полосе частот от нуля (постоянный ток) до нескольких килогерц.

Подобное оборудование при наличии соответствующих датчиков и устройств нормирования отлично подходит для измерения и регистрации самых разных физических параметров. Конкретные технические решения подробно рассматриваются в главе 6.

Концепция, разработанная британской компанией PICO Technology, весьма оригинальна: АЦП ADC 10 и ADC 12 выполнены в виде простого разъема DB25 (рис. 3.2). Подключение аналогового сигнала осуществляется с помощью кабеля через разъем типа BNC (СР50-73).

Рис. 3.2. Внешний вид АЦП ADC 10 и ADC 12

Достаточно вставить один из этих приборов в разъем параллельного порта (LPT1 или LPT2), чтобы превратить последний в аналоговый вход с диапазоном напряжений от 0 до 5 В. Не нужно ни батарей, ни другого внешнего источника питания, так как сам АЦП и его источник опорного напряжения потребляют столь мало энергии, что питаются от тех цепей передачи данных, которые не задействованы для связи с ПК. Надо лишь запустить программу PICOSCOPE, поставляемую вместе с АЦП, чтобы сразу же получить цифровой вольтметр, запоминающий осциллограф и анализатор спектра.

Предлагаемый отдельно пакет PICOLOG позволяет, в свою очередь, проводить регистрацию динамики медленных процессов. Он обладает также многими другими возможностями, которые будут подробно рассмотрены в главе 5.

Конечно, не следует рассчитывать на то, что за несколько десятков долларов можно получить эквивалент прибора, стоящего в тысячи раз дороже.

Основные ограничения на применение рассматриваемых устройств накладывают максимальная частота дискретизации (до 25 кГц) и единственный диапазон входных напряжений (0–5 В). Правда, следует отметить, что вход защищен от перегрузок до ±30 В.

Таким образом, для большинства практических приложений этого прибора понадобится добавить устройство нормирования сигнала, в качестве которого может выступить простая гальваническая батарейка, резисторный делитель напряжения, конденсатор или операционный усилитель с несколькими резисторами.

Ниже приведены драйверы, которые позволят легко писать программы для решения любой конкретной задачи и на языке BASIC, и на языке PASCAL, и на языке С. Эти вопросы подробно освещаются в главе 5.

На рис. 3.3 приведена упрощенная принципиальная схема АЦП ADC 10 и ADC 12, а на рис. 3.4 показана конструкция этих изделий.

Рис. 3.3. Упрощенная схема АЦП ADC 10 и ADC 12

Рис. 3.4. Конструкция АЦП ADC 10 и ADC 12

При очевидной простоте технического решения возможности измерительной системы в значительной мере определяются ее программным обеспечением.

Эта схема является хорошим примером применения миниатюрных аналого-цифровых преобразователей с выводом информации в последовательном коде, рассмотренных в главе 2. Оригинальность схемы состоит в том, что опорное напряжение в ней составляет 2,5 В, а входное напряжение делится на 2 для получения полной шкалы устройства в 0–5 В. Подобная хитрость позволяет, кроме того, весьма эффективно и с малыми затратами защитить вход АЦП от перегрузок, а также обойтись для питания устройства напряжением около 5 В, получаемым от цепей информационных данных параллельного порта. Для этого на соответствующих выходах порта программно устанавливаются напряжения высокого логического уровня.

Аналого-цифровые преобразователи ADC 10 и ADC 12 различаются между собой разрядностью (соответственно 8 и 12 разрядов) и входным сопротивлением (соответственно 200 кОм и 66 кОм). Кроме этого, модели можно различить по цвету корпуса. При практическом применении следует учитывать указанные величины входных сопротивлений, если планируется использовать стандартные щупы с делителями.

Представляется заманчивым сразу предпочесть ADC 12, а не ADC 10, и получить разрешение в 4096 точек по приемлемой цене. Но не все так просто!

Прежде всего, надо отметить, что передача 12 битов в последовательном коде занимает как минимум на 50 % больше времени, чем передача 8 бит. От этого сильно зависит верхний предел частоты дискретизации, а он должен быть как можно большим…

Кроме того, следует учесть, что точность других компонентов (хотя бы входного делителя) составляет 1 %. Это соответствует разрешению в 256 точек (8 разрядов), но недостаточно для точности 0,025 %, соответствующей разрешению в 4096 точек (12 разрядов).

Большинство осциллографов с цифровой памятью имеют точность лишь от 2 % до 4 % и разрешение на уровне 8 разрядов, зато они работают при частотах входных сигналов до десятков мегагерц.

Главный аргумент в пользу ADC 12 состоит в том, что его точность 1 % обеспечивается даже для входного напряжения, существенно меньшего пяти вольт. Действительно, шаг квантования этого АЦП составляет 1,2 мВ, в то время как у ADC 10 он равен 20 мВ (теоретическое обоснование данного факта приведено в главе 2).

Следовательно, в диапазоне входных напряжений 0 В — 300 мВ аналого-цифровой преобразователь ADC 12 будет таким же точным, как ADC 10 в диапазоне от 0 В до 5 В. Заметим, что можно достичь того же результата и с помощью ADC 10, снабдив его регулируемым усилителем. Этот способ будет рассмотрен в главе 6.

ДРУГИЕ КОМПОНЕНТЫ ЭТОЙ СЕРИИ

Компания PICO Technology, расположенная в области, которую обыкновенно называют английской Кремниевой Долиной (в окрестностях Кембриджа), уже много лет специализируется на приборостроении и системах сбора и обработки данных.

Изделия ADC 10 и ADC 12 — лишь два образца из всего многообразия продуктов, разработанных компанией, хотя оригинальность названных приборов сделала их бестселлерами. Кроме этих двух одноканальных устройств надо отметить ADC 11 (11-канальный, 10-разрядный), ADC 16 (8-канальный, 8- или 16-разрядный). ADC 100 (2-канальный, 12-разрядный), ADC 200 (2-канальный, 8-разрядный, с частотой дискретизации до 100 МГц).

За исключением ADC 11, который стоит столько же, сколько ADC 12, и имеет частоту дискретизации до 15 кГц, область применения перечисленных приборов совсем иная. Действительно, частота дискретизации сильно зависит от числа входных каналов и разрядности преобразователя. Например, имея частоту дискретизации 2 Гц при 16-разрядном и 300 ГЦ при 8-разрядном режиме, ADC 16 может обрабатывать лишь очень медленные процессы. Но при входном сопротивлении 1 МОм, диапазоне входного сигнала от -2,5 В до +2,5 В и возможности организации дифференциальных входов его можно применять для самых «тонких» приложений, таких как хроматография или измерение биопотенциалов.

Аналого-цифровой преобразователь ADC 100 заслуживает более подробного описания, в частности, потому, что он заметно превосходит по параметрам ADC 10 (но стоит при этом в пять раз дороже) и даже ADC 12. Очевидно, что его можно применять в более серьезных областях. Выполненный в пластиковом корпусе (рис. 3.5), который удобнее по сравнению с корпусом разъема DB25, АЦП ADC 100 имеет гораздо более сложную схему, чем его предшественники, так как его конструкция не ограничена требованиями миниатюризации.

Рис. 3.5. Внешний вид платы АЦП ADC 100

На приведенной фотографии видно, что рядом с двумя разъемами BNC расположены два кнопочных переключателя, коммутирующих открытое и закрытое состояние входа (AC/DC). Как и любой осциллограф, прибор может работать и с открытым входом, и через конденсатор, препятствующий прохождению постоянной составляющей входного сигнала. Эта возможность, представляющая в диапазоне 0–5 В лишь относительный интерес, в данном случае полностью оправдана, поскольку ADC 100 работает как с положительными, так и с отрицательными входными напряжениями. Более того, он имеет семь пределов измерения, выбираемых программно: ±200 мВ, ±500 мВ, ±1 В, ±2 В, ±5 В, ±10 В и ±20 В. Благодаря входному сопротивлению, составляющему ровно 1 МОм на всех пределах, достаточно любого стандартного щупа с делителем 1:10 для получения дополнительного предела ±200 В.

Таким образом, АЦП ADC 100, имеющий 4096 уровней квантования (2048 для положительных и 2048 для отрицательных напряжений), обладает при измерении напряжения 25 мВ на входе той же точностью, что и ADC 10 при измерении напряжения 5 В. Лишь в редких случаях может понадобиться добавление на его входе какого-либо внешнего усилителя.

В стандартную поставку ADC 100 входят пакеты программ PICOSCOPE и PICOLOG, которые поддерживают его дополнительные возможности. Например, осциллограф PICOSCOPE является двухканальным и может работать даже в режиме «Х-Y» для формирования фигур Лиссажу. Его также можно использовать в качестве характериографа для снятия вольт-амперных характеристик (ВАХ) полупроводниковых приборов или как «анализатор сигнатур» тех устройств, для которых отсутствуют принципиальные схемы.

При обработке сигналов одновременно в обоих каналах реальная частота дискретизации достигает 53 кГц (при использовании ПК с процессором 386SX25). Это означает, что сигнал с частотой 10 кГц, прямоугольный или даже треугольный, будет весьма сильно искажен (но тем не менее пригоден для оценки, в отличие от ситуации с использованием АЦП ADC 10 и ADC 12).

В одноканальном режиме при тех же условиях достижима частота дискретизации 106 кГц (до 120 кГц при использовании процессора 486/66 МГц), поскольку нет разделения ресурсов между каналами. Прямоугольный сигнал с частотой 10 кГц в таком случае будет отображен правильно, возможно, с чуть менее крутыми фронтами, чем на самом деле.

Что касается верхнего предела частотного диапазона ADC 100, то он объективно лежит в области от 8 до 12 кГц, тогда как, применяя ADC 10, едва ли удастся перешагнуть рубеж 2–3 кГц.

Иначе обстоит дело при работе с виртуальным анализатором спектра, так как в этом случае не требуется точно восстанавливать форму сигнала, а следует выполнить алгоритм быстрого преобразования Фурье (БПФ — FFT). На практике можно получать спектры сигналов в полосе шириной до 30–40 кГц, а это значит, что полоса звуковых частот 20 Гц — 20 кГц перекрывается полностью. Кстати, можно очень точно выделить составляющую пилот-сигнала 19 кГц в спектре радиовещательного комплексного стереосигнала системы CCIR.

Цифровой виртуальный мультиметр также имеет дополнительные возможности. Для получения среднеквадратичного вольтметра теперь не нужно устройство нормирования, а режим частотомера позволяет проводить точнейшие измерения основной гармоники с частотой до 30 кГц. Это будет отличным дополнением анализатора спектра, который показывает высшие гармоники в спектре входного сигнала.

При этом в различных режимах на экран можно одновременно вывести до шести индикаторов, то есть по три индикатора на канал: вольтметр постоянного тока, среднеквадратичный вольтметр и частотомер. А в особенных случаях имеется возможность преобразовать одно из напряжений или частоту в другие, более удобные величины для прямого отсчета измеряемого параметра.

Как было указано, АЦП ADC 100 имеет семь пределов измерения, которые выбираются программным способом вручную или автоматически: вольтметр PICOSCOPE может сам искать предел измерения, обеспечивающий наибольшую точность, а в случае использования виртуального осциллографа управление выбором пределов осуществляется вручную. Если с этой программой используются АЦП типов ADC 10 и ADC 12, то она просто подбирает масштаб шкалы для выводимой кривой.

При работе с программой PICOLOG пользователь должен до начала измерений самостоятельно определить тот предел, который он сочтет наиболее подходящим для каждого канала.

АЦП ADC 100 просто подключается кабелем, входящим в комплект поставки, к разъему параллельного порта ПК (не нужно ни источника питания, ни даже гальванической батарейки!). При этом он способен обеспечить возможности и характеристики, сравнимые с некоторыми платами сбора данных, предназначенными для установки в слоты материнской платы.

ADC 100 — это техническое решение, которое целесообразно использовать, если достаточно частоты дискретизации в 50-100 кГц. Для более высоких скоростей стоит выбрать АЦП ADC 200.

4. СОБЕРИТЕ СВОЙ ИЗМЕРИТЕЛЬНЫЙ ИНТЕРФЕЙС

Самостоятельная сборка аналогового интерфейса привлекательна прежде всего вследствие значительной экономии средств, особенно если при этом не понадобится серьезное математическое обеспечение, обычно поставляемое в комплекте с промышленными изделиями. При таком подходе можно также выбрать другие способы связи «интерфейс-ПК», например, подключаться к ПК через последовательный, а не через параллельный порт, или же использовать гальваническую развязку, которая в определенных случаях будет необходима.

УНИВЕРСАЛЬНЫЙ АНАЛОГОВЫЙ ИНТЕРФЕЙС ДЛЯ ПОСЛЕДОВАТЕЛЬНОГО ПОРТА

Что может быть более естественным, чем подключение последовательного АЦП к последовательному порту, даже если промышленные изделия чаще используют порт параллельный? По правде говоря, главное преимущество такого решения состоит в том, что ПК с двумя (и даже с четырьмя) последовательными портами встречаются гораздо чаще, чем ПК с двумя параллельными портами.

С тех пор как появились специальные порты для мыши, у компьютера довольно часто остается свободным по меньшей мере один последовательный порт; между тем параллельный порт практически всегда занят принтером, очень полезным в виртуальном измерительном комплексе для вывода графиков и числовых результатов.

Еще одним преимуществом последовательного порта RS 232 является более высокая нагрузочная способность, по сравнению с большинством параллельных портов. Она позволяет отчасти разрешить проблему питания не всегда экономичных схем интерфейсов.

Принципиальная схема, приведенная на рис. 4.1, построена на основе схемы промышленных АЦП ADC 10 и ADC 12 (рис. 3.3).

Рис. 4.1. Принципиальная схема интерфейса для последовательного порта

В частности, применен аналогичный входной каскад с делителем напряжения. При использовании тех же номиналов резисторов R4 и R5 (100 кОм для 8-разрядного ADC 10 и 33 кОм для 12-разрядного ADC 12) можно обеспечить автоматическую совместимость этого устройства со всеми приставками, которые будут описаны в главе 6 — устройствами нормирования сигналов, датчиками и т. п.

И наоборот, совершенно очевидно, что с данным устройством нельзя использовать программы, предназначенные для ADC 10 и ADC 12, можно применять только те программы, которые написаны именно для него и приведены на сервере www.dnik.ru. Также допускается использование собственных разработок, основанных на драйверах, о которых пойдет речь в главе 5.

Номиналы резисторов входного делителя в любом случае нуждаются в пояснениях, а их подбор требует определенной аккуратности.

Надо учитывать, что входное сопротивление микросхемы АЦП последовательного приближения (вывод 2) имеет, по крайней мере, во время выполнения преобразования, почти только емкостный характер. При напряжении питания 5 В ток утечки в пределах 1 мкА соответствует активной составляющей сопротивления 5 МОм, что значительно больше входного сопротивления обычного осциллографа. Емкостная же составляющая может достигать 30 пФ у микросхемы TLC 1549 и 100 пФ у LTC 1292. Это опять же не сильно отличается от того, что свойственно входу классического осциллографа, но случай, который нас интересует, совершенно особый.

Входная емкость образована элементами устройства выборки-хранения, и она постоянно изменяется. Согласно рис. 4.2, интегрирующий фильтр, образуемый этой емкостью С и всяким сопротивлением R, включенным последовательно с входом, определяет время нарастания сигнала, пропорциональное произведению RC.

Рис. 4.2. К пояснению эффекта интегрирующего фильтра но входе АЦП

Если частота дискретизации слишком велика относительно частоты среза интегрирующего фильтра, то преобразование начнется в тот момент, когда эквивалентный конденсатор с емкостью С будет заряжен еще не полностью, и, следовательно, результат измерения будет неверным.

Величины резисторов, выбранные для входных цепей ADC 10 и ADC 12 (рис. 3.1), разумеется, были рассчитаны так, чтобы гарантировать желаемую точность на высоких частотах дискретизации, на которых могут работать эти приборы (около 20 кГц). Но номиналы резисторов можно увеличивать, если потребителя устраивают не столь высокие скорости измерений. При использовании изделий в комплекте с программами, написанными на языке BASIC с интерпретатором и выполняемыми на не очень быстром процессоре, номиналы можно увеличить до 500 кОм, так чтобы получить стандартное входное сопротивление 1 МОм. В обычных случаях прекрасно подойдет номинал 100 кОм (с допуском 1 % или меньше).

Подключение линий управления и линии данных АЦП к порту RS 232 более сложное, чем к параллельному порту. Действительно, рабочие уровни напряжений на выводах последовательного порта обычно составляют около 12 В, тогда как АЦП формирует напряжения от 0 до 5 В.

Для решения этой проблемы в схеме установлены три стабилитрона VD5 — VD7 на напряжение 4,7 В и два резистора R1 и R2. Кроме того, перед интегральным стабилизатором 78L05, формирующим напряжение 5 В из сигнала линии TXD, должен быть включен импульсный диод VD8.

Предусмотрен также вход для внешнего источника питания, расположенный рядом с аналоговым входом, на тот случай, когда ПК не сможет обеспечить достаточный уровень напряжения. Это может случаться, хотя крайне редко, при использовании некоторых моделей ноутбуков. В таком случае простая 9-вольтовая гальваническая батарейка сможет надолго обеспечить работу устройства.

Все устройство смонтировано на печатной плате (рис. 4.3), размеры которой невелики, но которая все же не претендует на размещение в корпусе разъема DB9, подключаемого к ПК.

Рис. 4.3. Топологическая схема печатной плоты устройства

Подключение через кабель DB9 (вилка/розетка) с одноименной распайкой (удлинитель, а не нуль-модем) более предпочтительно, чем прямое подключение к разъему ПК. В таком случае АЦП будет расположен в непосредственной близости от источника сигнала, а не от ПК, что дает больше преимуществ, чем недостатков, на тех частотах, на которых предполагается работать.

Монтажная схема и фотография, приведенные на рис. 4.4 и 4.5, соответствуют всем трем вариантам устройства, которые можно собрать самостоятельно:

• 8-разрядный АЦП с TLC 549;

• 10-разрядный АЦП с TLC 1549;

• 12-разрядный АЦП с LTC 1286 или ADS 1286.

Рис. 4.4. Монтажная схема устройства

Рис. 4.5. Внешний вид печатной платы устройства

Соединительная колодка с четырьмя контактами (или двумя, если не предполагается использовать внешний источник питания) предназначена для подключения входного сигнала. Подобный способ межблочных соединений представляется более удобным, нежели коаксильные разъемы BNC или RCA («тюльпан»), для предполагаемых областей применения — в частности, при использовании приставок, описанных в главе 6.

ВЕРСИЯ ИНТЕРФЕЙСА КОМПАНИИ MAXIM

Представляется полезной в практическом применении версия устройства, разработанная на основе микросхем ЛЦП МАХ 1241 и МАХ 1243, имеющих отличные характеристики и рассмотренных выше в главе 2.

Основное отличие от предыдущего варианта заключается только в компоновке печатной платы (рис. 4.6) по причине того, что расположение выводов этих компонентов совершенно иное.

Рис. 4.6. Топологическая схема печатной платы устройства для версии компании MAXIM

Для микросхем МАХ 1241 (12-разрядный АЦП) и МАХ 1243 (10-разрядный АЦП) можно использовать одни и те же элементы и одинаковое их размещение на плате (рис. 4.4 и 4.7).

Рис. 4.7. Внешний вид печатной платы устройства для версии компании MAXIM

Учитывая малую входную емкость этих микросхем (16 пФ), можно попробовать как минимум удвоить величины резисторов входного делителя для той же частоты дискретизации. Из соображений унификации и совместимости в схеме целесообразно применить источник опорного напряжения производства компании MAXIM, параметры которого адаптированы к параметрам описываемых АЦП.

Хотя в этом семействе АЦП существуют модели со встроенным источником опорного напряжения, зачастую лучшие результаты получаются при использовании специализированного и оптимизированного отдельного компонента.

Источник опорного напряжения (ИОН) типа МАХ 6125, расположение выводов которого приведено на рис. 4.8, выпускается в корпусе SO для поверхностного монтажа (SMD).

Рис 4.8. Расположение выводов ИОН МАХ 6125

Это не «улучшенный стабилитрон», а эквивалент высокоточного (1 %) трехвыводного интегрального стабилизатора. Он включает в себя и двухвыводный источник опорного напряжения, и необходимый последнему резистор, вследствие чего потребление тока устройством существенно снижается (75 мкА на ИОН и менее 2,5 мА на АЦП).

Для монтажа ИОН в схему рассматриваемого устройства необходимо добавить небольшую печатную плату (ее топологическая схема приведена на рис. 4.9). Она монтируется на основную плату при помощи трех металлических штырьков, изготовленных из выводов резисторов. Штырьки вставляются в отверстия, предназначенные для резистора R3 и положительного вывода VD4 REF 25 Z (рис. 4.1).

Рис. 4.9. Топологическая схема печатной платы для источника опорного напряжения версии MAXIM

Монтаж ИОН МЛХ 6125 непосредственно на контактные площадки этой небольшой платы (рис. 4.10 и 4.11) не представляет проблем, если использовать паяльник с тонким жалом, не набирать много припоя и сначала припаять два диаметрально противоположных вывода (например, 4 и 8). Заметим, что припаивать неиспользуемые выводы N.C. необязательно.

Выбор варианта будет зависеть от доступности компонентов и от возможностей пользователя, но было бы интересно собрать два разных устройства и сравнить получаемые в разных приложениях результаты.

Рис. 4.10. Монтажная схема ИОН для версии компании MAXIM

Рис. 4.11. Внешний вид печатной платы ИОН, установленной на плату устройства, для версии компании MAXIM

ВЕРСИЯ ИНТЕРФЕЙСА С ОПТРОННОЙ РАЗВЯЗКОЙ

Описываемые в книге устройства в подавляющем большинстве случаев будут использоваться для измерения параметров сигналов относительно общего или сетевого провода. Но в ряде ситуаций могут возникнуть проблемы из-за того, что общий провод устройства соединен с корпусом ПК.

За исключением тех случаев, когда устройство работает с переносным ПК с автономным питанием, его ни в коем случае нельзя подключать непосредственно к цепям, не изолированным от сети или находящимся под высоким потенциалом.

Добавление нескольких оптронов к рассматриваемой схеме поможет решить эту проблему, хотя это и приводит к незначительному ухудшению характеристик интерфейса.

Какими бы параметрами ни обладал оптрон, в нем всегда используется оптический принцип передачи сигналов без всякой гальванической связи. При этом и источник, и приемник оптического излучения размещены в едином корпусе. Для передачи излучения от передатчика к приемнику используются различные технологии, описание которых выходит за рамки этой главы. Особенности этих технологий определяют основные характеристики оптрона, обеспечивая, в частности, необходимый компромисс между степенью изоляции, коэффициентом передачи и быстродействием.

В большинстве случаев источником излучения служит светодиод из арсенида галлия, работающий в ближней инфракрасной области спектра. При этом спектр его излучения практически совпадает с областью максимальной спектральной чувствительности кремниевых фотоприемников, наиболее дешевых и широко распространенных. В специальных оптронах могут также использоваться и другие излучатели, такие как миниатюрные лампы накаливания или газоразрядные светоизлучающие приборы, например, неоновые. В качестве фотоприемников можно часто встретить фоторезисторы, как, например, в оптопарах «лампа накаливания-фоторезистор», широко применявшихся лет двадцать назад. Эти оптопары использовались в звуковых трактах в качестве потенциометров с электронным управлением.

По поводу оптронов «неоновая лампа-фоторезистор» стоит отметить, что они применяются в основном в качестве детекторов посылок вызова в некоторых специализированных телефонных устройствах.

Самые распространенные оптроны выпускаются в корпусе DIP6 и строятся по схеме, приведенной на рис. 4.12: инфракрасный светодиод оптически связан с фототранзистором, три вывода которого являются выходами оптрона.

Рис. 4.12. Схема и расположение выводов типового оптрона

По рис. 4.12 видно, что принятое расположение выводов обеспечивает максимальное расстояние между входом и выходом. Очевидно, что при такой конструкции нет необходимости делать оптрон с изоляцией, выдерживающей напряжение 3000 В, если напряжение пробоя между контактными площадками или печатными проводниками составляет всего около 500 В.

В большинстве случаев вывод базы не используется, так как транзистор переходит в проводящее состояние в результате фотоэлектрического эффекта. Тем не менее иногда встречаются схемы, где между базой и эмиттером включен резистор. Обеспечивая быстрое рассасывание накопленного в базе заряда, такое схемное решение заметно улучшает время срабатывания оптрона, но, к сожалению, за счет снижения его коэффициента усиления по току или коэффициента передачи. Надо заметить, что этот резистор уменьшает также и обратный ток коллектора.

В некоторых случаях вывод базы можно использовать для управления транзистором независимо от состояния светодиода, но при этом надо следить, чтобы не нарушились изоляционные свойства оптрона.

Такой распространенный оптрон как TIL 111 (аналоги МСТ2, H11 А2 и т. п.) имеет напряжение изоляции 1500 В, полосу пропускания 300 кГц и коэффициент передачи тока около 8 %. Это значит, что при силе тока светодиода 10 мА сила тока фототранзистора будет составлять не более 800 мкА.

Оптрон 4N28 при напряжении изоляции 500 В имеет коэффициент передачи тока 10 %, тогда как 4N25 имеет такой же коэффициент передачи, но при напряжении изоляции 2500 В.

У моделей типа SL5500 (специальный телефонный оптрон) коэффициент передачи тока может составлять до 40 %, при этом напряжение изоляции равно 3500 В при постоянном токе или 2500 В (эффективное) при переменном. Оптрон SL 5501, цена которого чуть ниже, имеет коэффициент передачи тока не более 15 %.

Что касается оптрона CNY 17-2, широко применяемого в телефонии, то его коэффициент передачи достигает 80 %, напряжение изоляции составляет 4400 В, а ширина полосы пропускания — более одного мегагерца.

Некоторые оптроны, выпускаемые в корпусах DIP8, используют фотодиод, соединенный с транзистором, не чувствительным к излучению, а служащим лишь для усиления тока фотодиода. Так как для правильной работы па фотодиод должно быть подано обратное напряжение смещения, создающее соответствующий обратный ток, оптроны такого типа имеют дополнительный вывод для его подключения, обозначаемый VCC. Таким образом можно получить оптроны с достаточно высоким коэффициентом передачи и с исключительным быстродействием- 11 МГц для элемента CNW 136 компании Hewlett-Packard.

Оптрон HPCL 4562 того же изготовителя, специально предназначенный для передачи аналоговых сигналов, имеет полосу пропускания 17 МГц при коэффициенте передачи тока 200 %. Но самым популярным решением для радикального увеличения коэффициента передачи тока является применение составного фототранзистора, построенного по схеме Дарлингтона. Это решение используется при изготовлении широко распространенного оптрона 4N33, имеющего высокий коэффициент передачи тока — 500 %, но полосу пропускания только 30 кГц.

Более быстродействующий оптрон CNW 139 (производитель Hewlett-Packard) имеет рекордный коэффициент передачи 3000 % — иными словами, усиление в 30 раз.

В схеме интерфейса, представленной на рис. 4.13, использованы три самых дешевых оптрона 4N33, но по необходимости для улучшения параметров этого АЦП можно применять более качественные и дорогие компоненты.

Рис. 4.13. Принципиальная схема последовательного АЦП с оптронной развязкой

Применение оптронов с большим коэффициентом передачи позволяет обеспечить простоту схемотехнических решений, достижение которой является одной из целей данной книги.

В более серьезных проектах между оптронами и АЦП наверняка будут включаться логические схемы с триггерами Шмитта, служащими в качестве формирователей для быстроизменяющихся сигналов.

Малогабаритные последовательные АЦП способны обеспечить достаточно большие выходные токи, что позволяет подключать светодиод оптрона непосредственно к их выходам через резистор сопротивлением всею 2,7 кОм. Этого достаточно, чтобы фототранзистор оптрона нормально работал с входными линиями порта RS 232 компьютера, получая напряжение питания от линии RXD того же порта через такой же резистор. Следует учитывать, что напряжение на этой линии более высокое — иногда выше 12 В.

Для защиты от отрицательного напряжения, появляющегося на выводах порта RS 232 и также воздействующего на светодиоды через резистор сопротивлением 2,7 кОм, в схему добавлены диоды D1 и D2 1N4148.

Фототранзисторы оптронов ОР1 и ОР2 формируют управляющие сигналы, которые воздействуют на входы АЦП, соединенные с общим проводом резисторами сопротивлением 82 Ом. Такой номинал, необычно малый и вызывающий потребление большой мощности, необходим для повышения крутизны фронтов управляющих сигналов.

Таким образом, гальваническая развязка целиком обеспечена со стороны цифровой части, а схема аналогового входа осталась абсолютно идентичной схеме, показанной на рис. 4.1.

В остальной части устройства тоже есть несколько особенностей.

Так, для подачи напряжения питания ни в коем случае нельзя использовать порт RS 232, иначе будет нарушена созданная гальваническая изоляция. Поэтому необходим внешний источник питания (например, гальваническая 9-вольтовая батарея). В качестве стабилизатора выбран компонент LM 2931, имеющий очень малое падение напряжения на регулирующем элементе, что позволяет при необходимости обойтись источником питания 5 В. Если же есть уверенность, что внешнее напряжение питания будет всегда больше 5 В, то можно применить обычный стабилизатор 78L05, при условии уменьшения емкости конденсатора на выходе стабилизатора до 10 мкФ. При использовании внешнего источника питания требования к энергопотреблению становятся менее жесткими, поэтому источник опорного напряжения REF 25 Z может быть заменен на менее экономичный, но более дешевый и при этом имеющий точность 0,2 %, а не 1 % (например, LT 1009 CZ производства компании Linear Technology).

При изготовлении этого модуля использована односторонняя печатная плата, чуть более длинная, чем предыдущие, но имеющая ту же ширину. Ее топологическая схема показана на рис. 4.14.

Рис. 4.14. Топологическая схема платы последовательного АЦП с оптронной развязкой

Можно заметить, что одна контактная площадка ИОН LT1009 CZ, предназначенная для включения схемы точной подстройки, никуда не подключена. Вероятно, такое же изменение понадобится внести в рисунок печатной платы, приведенный на рис. 4.3, если возникнет необходимость применить этот компонент вместо REF 25 Z. Это представляет определенный интерес для 10- и 12-разрядных версий АЦП.

Расположение элементов схемы на печатной плате показано на рис. 4.15 и 4.16.

Рис. 4.15. Монтажная схема последовательного АЦП с оптронной развязкой

Рис. 4.16. Внешний вид платы последовательного АЦП с оптронной развязкой

Подключение устройства к ПК производится таким же кабелем с разъемами DB9, какой использовался в предыдущих случаях.

5. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВИРТУАЛЬНОГО ИЗМЕРИТЕЛЬНОГО КОМПЛЕКСА

Выбор того или иного коммерческого программного обеспечения (ПО) для виртуального измерительного комплекса определяется как конкретным типом аналогового интерфейса, имеющегося в наличии, так и особенностями измерений, которые необходимо проводить.

В целом программы, поставляемые с промышленными интерфейсами, являются лучшими, если говорить о возможной частоте дискретизации, и часто могут работать в таких сложных режимах как спектральный анализ сигналов. Их адаптация для некоторых задач иногда требует значительных усилий, так что в подобных случаях предпочтительнее написать несколько строк программы на языке ВАSIС, чтобы достичь желаемой цели.

В этой главе будут последовательно рассмотрены эти два разных, но взаимодополняющих способа практического воплощения концепции построения виртуального измерительного комплекса.

КОММЕРЧЕСКОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Рассмотрим вначале программное обеспечение, поставляемое в комплекте с АЦП ADC 10 и ADC 12.

Пакет PICOSCOPE

PICOSCOPE — это универсальное приложение, в котором при помощи меню можно в любой момент выбрать тип прибора, нужного пользователю:

• цифровой вольтметр постоянного или переменного тока (среднеквадратичный);

• цифровой частотомер;

• запоминающий осциллограф (от 1 мсек/дел до 5 сек/дел);

• низкочастотный анализатор спектра.

Версия пакета для DOS позволяет использовать одновременно только один виртуальный прибор или несколько мультиметров, тогда как версия для Windows допускает многооконность (рис. 5.1), хотя этот режим заметно замедляет работу всей системы.

Рис 5.1. Иллюстрация многооконного режима программы PICOSCOPE

Очень важно отметить, что при работе с сигналами переменного тока необходимо обеспечивать достаточную величину постоянного смешения входного сигнала. Без этого всякая отрицательная составляющая будет просто-напросто проигнорирована (диапазон измерений составляет от 0 до 5 В, и только новые модели ADC 40 и ADC 45 имеют входной диапазон ±5 В).

Подача переменного напряжения прямо на вход ADC 10 или ADC 12 не приводит к их выходу из строя (по крайней мере, до 30 В пикового значения или до 20 В эффективного). Но при этом показания среднеквадратичного вольтметра будут абсолютно неверными, осциллограмма окажется урезанной (однополупериодное выпрямление), а спектр будет искажен паразитными спектральными линиями (появятся четные гармоники).

Есть много вспомогательных способов (например, использование гальванической батарейки, включенной последовательно с входом), которые позволяют обрабатывать сигналы переменного тока с нулевой или малой постоянной составляющей, но более предпочтительно использовать хотя бы простое устройство нормирования сигналов (см. главу 6).

Хотя АЦП ADC 10 и ADC 12 можно подключить к любому IBM-совместимому ПК (желателен экран VGA, но достаточно и CGA), не рекомендуется использовать программу PICOSCOPE с процессорами ниже 386, в крайнем случае, 286. Вполне пригодны модели ПК типа 386SX25, но, естественно, более современные подойдут лучше.

В случае сбора данных о параметрах медленных процессов (снятие кривых заряда или разряда аккумуляторов, измерение температур и т. п.) можно быть уверенным, что даже старого процессора 8088 с тактовой частотой 4,77 МГц будет достаточно. Но для работы с ним надо использовать другую программу, например, PICOLOG или те программы, которые приводятся на сайте www.dmk.ru.

В целом желательно начать работу в режиме осциллографа, с выводом графики (рис. 5.2 и 5.3). Таким способом можно выявить все возможные ограничения сигнала или другие явления, способные повредить точности измерений каких-либо специфических величин.

Рис. 5.2. Экран виртуального осциллографа в режиме Windows

Рис. 5.3. Экран виртуального осциллографа

Как и при использовании любого другого осциллографа, следует помнить, что воспроизвести точную форму сигнала можно только тогда, когда верхняя частота его спектра гораздо меньше полосы пропускания измерительной цепи. Это значит, что в данном случае желательно ограничиться сигналами с частотой, не превышающей 2 кГц, чтобы избежать недоразумений.

Если зайти за разумные пределы, можно получить очень красивые кривые, но с ошибками в несколько порядков. Причиной тому — классическое явление, называемое наложением спектров. Оно проявляется в любой системе, в которой частота дискретизации меньше частоты обрабатываемого сигнала.

Через систему иерархических меню можно выбирать самые различные режимы работы, в основном соответствующие классическим режимам работы осциллографа: выбор режима синхронизации, выбор частоты развертки, усиления и смещения (в последнем случае желательно применять внешние электронные устройства). При этом есть возможность сохранить результаты измерения на диске либо распечатать осциллограммы или спектры на бумаге. Результаты могут быть также записаны в виде таблиц, экспортируемых в программы электронных таблиц, в текстовые редакторы или в графические пакеты.

Хотя анализатор спектра с полосой 2 кГц может вызвать улыбку у скептиков, анализатор, который входит в состав пакета PICOSCOPE, — совсем не игрушка, несмотря на его упрошенный алгоритм (для повышения быстродействия). Его точность легко оценить, проанализировав двухчастотные посылки DTMF, состоящие, как известно, из пар частот звукового диапазона и применяемые в телефонии для передачи цифр набираемого номера.

Понятно, что анализ сигналов с частотой 50 Гц не представляет проблем, а это открывает широкие возможности в изучении различных устройств, работающих от сети.

Вольтметр выполнен в виде цифрового табло, видимого с большого расстояния (например, с последней парты в классе). В версии DOS он снабжен также линейной шкалой. Это в некотором смысле аналог осциллографа с выключенной разверткой; постоянное напряжение отображается просто черточкой на экране, а переменная составляющая выглядит как полоса, ширина которой равна двойной амплитуде сигнала. Этого достаточно для анализа ограничений сигнала без осциллографических наблюдений.

Таким образом, в положении DC (постоянный ток) будет измерено среднее значение, а в положении АС (переменный ток) — среднеквадратичное (эффективное) значение напряжения, какова бы ни была форма входного сигнала. Подобных возможностей не могут предоставить многие обычные мультиметры.

Пакет PICOLOG

Регистратор на бумажной ленте (самописец) до сих пор широко применяется для визуализации медленных процессов с длительностью от нескольких секунд до нескольких часов, дней или даже месяцев. Но основной недостаток таких приборов состоит в их дороговизне (цена достигает нескольких тысяч долларов).

Пакет PICOLOG и один из аналого-цифровых преобразователей компании PICO Technology всего за несколько десятков долларов позволяют превратить любой ПК с принтером в виртуальный регистратор, способный выполнять не только функции обычного самописца, но и некоторые другие. Несомненно, это удачное решение, которое должно заинтересовать читателя.

Что касается медленных процессов, то пакет PICOSCOPE позволяет обеспечить максимальную длительность развертки 50 сек (5 сек/дел). Программа PICOLOG очень хорошо дополняет PICOSCOPE, имея частоты разверток от одного измерения в миллисекунду до одного измерения за N дней.

Пакет PICOLOG, выполняющий функции ленточного регистратора — это прежде всего программа сбора данных: она накапливает в определенном файле привязанные к текущему времени информационные данные, получаемые с заданной частотой опроса. Это могут быть результаты обработки нескольких последовательных измерений (эффекты применения фильтрации или усреднения). Именно из этих данных PICOLOG затем выводит один или несколько отчетов, которые могут быть представлены как в виде графиков, так и в виде цифровых таблиц.

Естественно, эти отчеты могут быть либо распечатаны на бумаге, либо экспортированы на дискету в самых разных форматах, а также просто выведены на экран (рис. 5.4), как с задержкой, так и в реальном масштабе времени, если интервал между отсчетами больше 50 мс.

Рис. 5.4. Результат вывода информации но экран при использовании пакета PICOLOC

Поскольку совершенно не обязательно задавать вид отчета перед началом измерений, есть возможность вывести любой вид отчета о любом наборе данных из тех, которые уже записаны на диске. При этом можно обойтись и без использования принтера. Измерения могут быть сделаны на портативном ПК или на старом ХT с процессором 8088, а затем обработаны на более мощном, но менее мобильном компьютере — надо просто скопировать и переслать файл!

Именно на этом этапе — этапе расшифровки результатов — можно воспользоваться широкими возможностями PICOLOG для обработки полученных данных: привязкой к шкале с использованием масштабного коэффициента, полиномиальным или даже табличным преобразованием, совмещением результатов нескольких измерительных каналов и др. В общем, это означает, что PICOLOG способен линеаризовать данные любого датчика, характеристики которого точно известны.

Естественно, можно выделить и распечатать или вывести на экран по отдельности все интересующие участки записи любого длительного процесса, так же, как если бы лента обычного регистратора разрезалась на куски для подробного изучения.

Для хранения информационных данных измерений и форм отчетов не нужны разные файлы. Каждому набору данных соответствует один файл в специальном формате PLR (Pico Log Run). Он содержит уже собранные данные, а характеристики выводимых отчетов добавляются в этот файл по мере их формирования. Надо также заметить, что одинаково легко вывести сделанный отчет повторно, определить вид нового отчета для того же набора данных или же изменить вид сделанного отчета. Это очень удобно, но немного опасно, так как в подобном случае есть риск потерять не столько сами данные, сколько формы и настройки, копии которых может и не сохраниться. Поэтому следует постоянно пользоваться многочисленными способами копирования и сохранения, которые имеет программа в своем меню «управление файлами», и по возможности всегда работать с копией. Это обязательно должно войти в привычку, если еще не вошло.

Правильное применение пакета PICOLOG подразумевает последовательное выполнение большого количества этапов, причем в определенном порядке, начиная с вызова множества меню. Некоторая сложность прохождения этих этапов — плата за огромные возможности программы. Очень важно разобраться в принципах работы PICOLOG, иначе можно попасть в «замкнутый круг» и вообще не добиться желаемого.

Прежде всего, надо выполнить инсталляцию программы с дискеты, следуя приведенным указаниям, которые могут различаться в зависимости от версии.

Помимо пакетов PICOSCOPE, PICOLOG и конфигурационных файлов, создаваемых в процессе инсталляции, есть еще файлы драйверов, необходимых для вывода информации на принтер или для экспорта в различные офисные программы. Файлы из стандартной поставки работают с большинством современных принтеров, а если желательно выводить информацию в форматах BMP или PCX (для Windows), PostScript, TIF и т. п., то надо «изготовить» специальный драйвер при помощи утилиты, продаваемой отдельно.

Надо отметить, что драйверы были написаны не самой компанией PICO Technology, а компанией, специализирующейся в данной области — Fleming Software. Именно поэтому программа выдает графические изображения очень высокого качества. Тем не менее не рекомендуется постоянно использовать опцию «высокое разрешение» при печати на матричных принтерах. На старых ПК в этом случае иногда может потребоваться до получаса времени для распечатки одной страницы; кроме того, улучшение изображения достигается в ущерб точности построения кривой (эффект «сглаживания»).

Помимо настройки параметров печати со всеми опциями по форматам, ориентации и разрешению, процедура инсталляции позволяет определить тип применяемого АЦП и порт, к которому он будет подключен. Понятно, что если АЦП подключен к параллельному порту, то последний уже нельзя использовать для подключения принтера. Есть два варианта решения этой проблемы: зарезервировать за АЦП второй принтерный порт (LPT2) или выводить данные для печати в файл, создаваемый на диске. Потом этот файл можно вывести на принтер. При этом надо учитывать, что объем файла будет очень велик, — гораздо больше, чем объем файла с результатами измерений.

Перед тем как перейти к практическому использованию виртуального регистратора, будет полезно с помощью опции вывода числовых величин («показать напряжение АЦП») проверить правильность измерения напряжения АЦП в диапазоне от 0 до 5 В, подаваемого на его вход. Если возникают какие-либо ошибки, следует убедиться в правильности всех соединений, а также проверить, нет ли аппаратных конфликтов между ПК и АЦП (если они есть, то такие же конфликты появятся и при использовании программы PICOSCOPE).

В принципе подобные проблемы возникают только при использовании портативных ПК, в которых для снижения энергопотребления применены нестандартные решения в схеме порта.

Прежде чем начать сеанс измерений и приступить к обработке результатов при создании отчета, необходимо проделать множество операций. К счастью, необязательно каждый раз проделывать все эти операции с нуля, так как предусмотрена простая процедура для перезапуска любого проведенного ранее сеанса. Надо просто присвоить новое имя файлу, чтобы не повредить старый файл при вводе новых данных.

Пользователю рекомендуется заранее подготовить несколько так называемых калибровочных таблиц, соответствующих текущим задачам. Впоследствии таблицы можно будет использовать по мере надобности.

В табл. 5.1 приведены некоторые примеры. Они показывают, как записывать на бумаге во временном масштабе значение напряжения, изменяющегося от 0 до 5 В или же приведенного к этому диапазону внешним устройством нормирования входного сигнала.

Таблица 5.1. Пример калибровочной таблицы

В первом примере значения регистрируются каждую миллисекунду (это самая высокая скорость регистрации) сто раз подряд. Каждая цифра представляет результат вычисления среднего значения по трем соседним выборкам, из расчета «одно измерение за каждые 100 мксек». Таким образом, вычисление значения для регистрации практически выполняется за 300 мксек.

Надо отметить, что такой режим соответствует предельным возможностям АЦП ADC 10. Прямоугольный сигнал с частотой 100 Гц, обработанный с помощью процессора 386SX25, будет выведен с заметно заваленными фронтами. А со старым ПК на процессоре 8086/8 МГц или 8088/4,77 МГц нежелательно превышать даже частоту 10 Гц. Но какой бы ПК ни использовался, гарантированы отличные результаты для любого входного сигнала с частотой, меньшей или равной 1 Гц. Таким образом, обеспечено согласование с возможностями программы PICOSCOPE.

Во втором примере также регистрируется одно значение за одну миллисекунду, но тысячу раз подряд, т. е. в течение одной секунды.

Третий пример иллюстрирует измерение, проводимое в течение одной минуты, со скоростью одно значение за 10 мсек. Эта скорость выборки достаточно высока для того, чтобы можно было выводить отчет на экран непосредственно во время регистрации. В этом случае на экран будет выдано сообщение о том, что идет процесс регистрации.

В четвертом примере регистрируется 14400 значений в час со скоростью одно значение за 250 мсек (т. е. 4 значения в секунду), но каждый раз вычисляется среднее арифметическое по десяти измерениям вместо трех. Это позволяет лучше отфильтровать возможные помехи, способные исказить вид кривой. Такая скорость сбора данных позволяет выводить отчет на экран в течение всего периода измерений и даже изменять параметры процесса прямо во время работы.

Верхняя часть таблицы («Параметры сбора данных» и «Параметры канала») соответствует тем настройкам, которые необходимо провести до начала работы. Все остальные этапы относятся к обработке результатов, а значит, их установка может быть проведена по окончании процесса измерений. Можно задать вид отчетов и в самом начале, если заранее известно, какой результат надо получить. Естественно, это необходимо сделать и при выводе отчета непосредственно в процессе измерений.

Надо четко представлять, что на этапе сбора информации в файл записываются «сырые» данные, не имеющие размерности. Это просто двоичные числа, например, в интервале от 0 до 255 при использовании 8-разрядного АЦП ADC 10. Этот поток данных называется «каналом», и ему должно быть присвоено имя. В приведенных примерах выбрано имя «ADC10». Разумеется, несколько каналов могут существовать одновременно — например, при работе с многоканальным АЦП, таким как ADC 11.

Среди всех видов отчетов, которые программа PICOLOG может извлекать из «сырых» данных, записанных в файле, самым употребимым будет, без сомнения, кривая изменения параметра в зависимости от времени (т. е. то, что выдает обычный ленточный регистратор). Именно такой отчет приведен в табл. 5.1.

Хотя вертикальную ось шкалы можно градуировать в двоичных кодах АЦП, гораздо более интересно провести их преобразование в единицы, соответствующие реальным величинам (например, напряжение от 0 до +5 В). Значит, надо определить имя параметра (здесь: «Напряжение») и указать программе математическую зависимость, связывающую информационные данные в «канале» и сам параметр. В данном случае это очень просто: зависимость линейная, смещение отсутствует (нулевой код на выходе АЦП соответствует О В на входе), а коэффициент преобразования составляет 5 В на 255 МЗР, или 0,01961 В/МЗР. После этого надо определить представление кривой «Y = F(t)» (рис. 5.5), но можно также запросить и табличное представление, образец которого приведен на рис. 5.6.

Рис 5.5. Пример графического отчета

Рис. 5.6. Пример отчета в виде таблицы

Сначала можно присвоить графику имя, которое будет отражено на бумаге в виде заголовка; впрочем, это необязательно. Затем надо градуировать оси, соблюдая размерности и единицы, выбранные на предыдущих этапах. По оси X, например, следует обеспечить максимальное значение 60000, если требуется произвести запись в течение одной минуты, с временной шкалой, проградуированной в миллисекундах (неважно, с каким интервалом проводились измерения — каждые десять или сто миллисекунд). По оси Y градуирование провести проще — достаточно объявить максимальное значение параметра, соответствующее полной шкале АЦП.

Позволительно также выводить в отчете информацию лишь о части измеряемого интервала, указав параметры «X мин.» и «X макс.», ограничивающие интересующий участок. Теоретически возможно сделать то же самое и для величин, откладываемых по оси Y, но тогда ухудшается разрешение. Поэтому лучше предварительно масштабировать сигнал, если его уровень не достигает величины +5 В. После вывода на экран и, возможно, после коррекции того или иного параметра вывода можно произвести распечатку полученных отчетов. Несколько примеров, приведенных здесь, дают представление о точности и четкости, которые достигаются даже на простом принтере с девятью иголками и с 8-разрядным АЦП.

Рис. 5.7 представляет пример распечатки в режиме низкого разрешения и альбомной ориентации, а рис. 5.8 — пример распечатки в режиме высокого разрешения и книжной ориентации.

Рис. 5.7. Распечатка с низким разрешением

Рис. 5.8. Распечатка с высоким разрешением

Приведенная на графиках экспонента отображает процесс разряда конденсатора емкостью 10 мкФ, заряженного до напряжения 5 В, через резистор сопротивлением 1 МОм.

Другой интересный случай — обработка файла, содержащего числовые значения, специализированными программами для получения высококачественной графики. Это могут быть как распространенные пакеты деловой графики, так и пакеты, предназначенные для научных исследований. Так, график, изображенный на рис. 5.9, был построен при помощи программы SigmaPlot, разработанной компанией SPSS Science, с использованием короткой записи сигнала, полученного от функционального генератора.

Рис. 5.9. Результат обработки данных специализированной программой

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЧАСТНОГО ПРИМЕНЕНИЯ

Этот раздел можно назвать главным во всей книге: именно в нем рассказывается, как решать практически любые задачи, связанные со сбором данных при низких частотах дискретизации. Модульная структура нижеприведенных программ на языке BASIC или языке TurboPASCAL позволяет адаптировать их к новым задачам, изменяя лишь несколько строк.

На рис. 5.10 представлена структура, по которой будут строиться готовые к работе приложения.

Рис. 5.10. Общая структура прикладных программ, рассматриваемых в книге

В начале программы находится драйвер, соответствующий выбранному АЦП — либо готовому, либо собранному самостоятельно по описанию, которое приведено в этой книге. Каждый драйвер был написан в соответствии со спецификациями, представленными изготовителями используемых компонентов, причем особое внимание уделялось временным диаграммам протоколов связи. Драйверы можно рассматривать как ПО, поставляемое «под ключ», но допустимо также модифицировать в самых разных целях.

Первый блок каждого драйвера (строки 10–90) проводит инициализацию последовательного или параллельного порта, используемого для связи, и обеспечивает подачу напряжения питания на подключенный к нему АЦП. Блок заканчивается командой GOTO 200, передающей управление собственно прикладной программе (строки 200–290). Эта программа универсальна, она зависит только от выполняемой задачи, но ни в коей мере — от применяемого АЦП. Поэтому заменить драйвер при смене АЦП (например, при переходе от 8-разрядного к 12-разрядному) очень просто.

Прикладная программа может сама обращаться ко второму блоку драйвера (строки 100–190) настолько часто, насколько требуется. Эта часть драйвера отвечает за выполнение одного — и только одного — аналого-цифрового преобразования и за размещение результата (величины напряжения в диапазоне от 0 до 5 В) в переменной D. Только прикладная программа определяет, с какой скоростью будут проводиться преобразования, надо ли комбинировать полученные значения перед выводом результата и каков будет способ обработки результата (цифровое табло, построение кривой, запись на диск, включение сигнала и т. п.).

Если не хватит места между строками 200 и 290 программы, можно поместить оператор GOTO в строке 290, что позволит продолжать работу, например, со строки 2000. Еще одна зарезервированная область, начиная со строки 300, предназначена для операторов вывода графики. Блок между строками 300 и 490 отведен для операторов инициализации экрана (выбор графического режима, построение координатной сетки, определение цветов и т. п.) Процедура вывода результатов на экран начинается со строки 500. Именно прикладная программа (строки 200–290) будет в нужный момент вызывать графическую подпрограмму командой GOSUB 500.

Очевидно, что понадобится использовать графические процедуры, предназначенные для каждого из экранных режимов (CGA, VGA и т. п.), хотя режим CGA, например, без проблем (и даже с некоторыми преимуществами) поддерживается всеми современными графическими платами.

Драйверы для 8-разрядных АЦП

На сервере www.dmk.ru содержатся драйверы для четырех 8-разрядных АЦП:

• АЦП АDС 10 компании PICO Technology;

• версия АЦП на базе TLC 549 (рис. 4.1, 4.3);

• версия АЦП на базе МАХ 1243 (рис. 4.6);

• версия АЦП на базе TLC 549 (рис. 4.13, 4.14).

Заметим, что хотя АЦП ADC 10 и собран на базе TLC 549, он требует особого драйвера, так как подключается к параллельному порту. Вполне логично, что версия драйвера для ADC 10 на языке BASIC называется ADC10.BAS.

10 REM — ADC 10 —

20 KEY OFF: CLS

30 B=&H378: REM LPT1:

40 N=8: REM число разрядов

50 OUT В, 2

60 FOR T=0 TO 100: NEXT T

70 OUT B,254

80 FOR T=0 TO 500: NEXT T

90 GOTO 200

100 OUT B,252: D=0: REM получение данных

110 FOR F=0 TO N-1

120 OUT B,253

130 E=INP(B+1) AND 128

140 OUT B,252

150 IF E=0 THEN D=D+2^(N-1-F)

160 NEXT F

170 D=5*D/(2^N-1)

180 OUT B,2: RETURN

190 REM (c) 1997 Patrick GUEULLE

Шестнадцатеричная величина 378 в строке 30 предполагает, что ADC 10 подключен к параллельному порту LPT1. Чтобы подключить ADC 10 к порту LPT2 (если таковой имеется), надо заменить эту величину на 278 или на любую другую величину, соответствующую установкам BIOS используемого компьютера.

Разработана также версия на языке TurboPASCAL, которая пригодится, если нужна более высокая частота дискретизации.

Исходный текст ADC10.PAS представляет собой не просто драйвер. В качестве примера он содержит небольшую прикладную программу вывода на экран результатов двадцати последовательных измерений, проводимых с интервалом в 500 мсек.

program adc10;

uses crt;

var n,f,e: byte;

b,g: integer;

d: real;

procedure init;

begin

b:=$378; n:=8;

port [b]:=2;

delay(100);

port [b]:=254;

delay(500);

end;

procedure acquisition;

begin

port[b]:=252; d:=0;

for f:=0 to n-1 do

begin

delay(2); port[b]:=253;

e:=port[b+1]: and 128;

port[b]:=252;

if e=0 then d:=d+exp((n-1-f) *ln(2));

end;

d:=(5*d)/(exp((n)*In(2))-1);

port[b]:=2;

end;

procedure affiche;

begin

acquisition;

d:=(int(100*d))/100;

writeln(d);

delay(500);

end;

begin

clrscr;

init;

for g:=1 to 20 do

begin

affiche;

end;

end.

(* COPYRIGHT 1997 Patrick GUEULLE *)

Устройство на базе МАХ 1243 также требует особого драйвера, версия которого на языке BASIC называется MAXIM8.BAS. Он определяет 8-разрядный режим работы для данного компонента, вообще-то представляющего собой 10-разрядное устройство.

10 REM — MAXIM8 —

20 KEY OFF: CLS

30 B=&H3F8: REM COM1:

40 N=8:REM число разрядов

50 OUT B+4,1

60 FOR T= 0 TO 100: NEXT T

70 OUT B+3,64

80 FOR T=0 TO 500: NEXT T

90 GOTO 200

100 OUT B+4,0: D=0: REM ACQUISITION

105 OUT B+4,2: OUT B+4,0

110 FOR F=0 TO N-1

120 OUT B+4,2

130 E=INP(B+6) AND 16

140 OUT B+4,0

150 IF E=16 THEN D=D+2^(N-1-F)

160 NEXT F

170 D=5*D/(2^N-1)

180 OUT B+4 1: RETURN

190 REM (c) 1997 Patrick GUEULLE

Шестнадцатеричная величина 3F8 в строке 30 предполагает, что устройство подключено к последовательному порту СОМ1. Чтобы иметь возможность использовать COM2 вместо СОМ1, надо заменить эту величину на 2F8, а при использовании COM3 или COM4 рекомендуется предварительно проверить установки BIOS по экрану настройки SETUP, выводимому на дисплей при включении ПК.

Версия на языке TurboPASCAL называется MAXIM8.PAS и также включает небольшую прикладную часть, выводящую на экран результаты двадцати измерений.

program maxim.8;

uses crt;

var n,f,e: byte;

b,g: integer;

d: real;

procedure init;

begin

b:=$3F8; n:=8;

port[b+4]:=1;

delay(100);

port[b+3]:=64

delay(500);

end;

procedure acquisition;

begin

port[b+4]:=0; d:=0;

port[b+4]:=2;port[b+4]:=2;

port[b+4]:=2;port[b+4]:=0;

for f: =0 to n-1 do

begin

port[b+4]:=2;

e:=port[b+6] and 16;

port[b+4]:=0;

if e=16 then d:=d+exp((n-1-f)*ln(2))

end;

d: = (5*d)/(exp((n)*ln(2)) -1);

port[b+4]:=1;

end;

procedure affiche;

begin

acquisition;

d: = (int(100*d))/100;

writeln(d);

delay(500);

end;

begin

clrscr;

init;

for g:=1 to 20 do

begin

affiche;

end;

end.

(* COPYRIGHT 1997 Patrick GUEULLE *)

Драйвер на языке BASIC, предназначенный для устройств на базе TLC 549 (рис. 4.1 и 4.13), называется 8BITS.BAS. Он также предназначен для работы с последовательным портом СОМ 1 (3F8h).

10 REM — 8BITS —

20 KEY OFF: CLS

30 B=&H3F8: REM COM1:

40 N=8: REM число разрядов

50 OUT B+4,1

60 FOR T=0 TO 100: NEXT T

70 OUT B+3,64

80 FOR T=0 TO 500: NEXT T

90 GOTO 200

100 OUT B+4,0: D=0: REM ACQUISITION

110 FOR F=0 TO N-1

120 OUT B+4,2

… В OCR-файле отсутствуют стр. 80, 81…

b:=$3F8; n:=10;

port[b+4]:=1;

delay(100);

port[b+3]:=64;

delay(500);

end;

procedure acquisition;

begin

port[b+4]:=0; d:=0;

for f:=0 to n-1 do

begin

port[b+4]:=2;

e:=port[b+6] and 16;

port [b+4]: =0;

if e=16 then d:=d+exp((n-1-f)*ln(2));

end;

d:=(5*d)/(exp((n)*ln(2))-1);

end;

procedure affiche;

begin

acquisition;

d:=(int(100*d))/100;

writeln(d);

delay(500);

end;

begin

clrscr;

init;

for g:=1 to 20 do

begin

affiche;

end;

end.

(* COPYRIGHT 1997 Patrick GUEULLE *)

Устройство на базе МАХ 1243 требует особого драйвера MAXIM10.BAS и также предназначено для работы с последовательным портом СОМ1 (3F8h).

10 REM — MAXIM10 —

20 KEY OFF: CLS

30 B=&H3F8: REM COM1:

40 N=10: REM число разрядов

50 OUT B+4,1

60 FOR T=0 TO 100: NEXT T

70 OUT B+3, 64

80 FOR T=0 TO 500: NEXT T

90 GOTO 200

100 OUT B+4,0: D=0: REM ACQUISITION

105 OUT B+4,2: OUT B+4,0

110 FOR F=0 TO N-1

120 OUT B+4,2

130 E=INP(B+6) AND 16

140 OUT B+4,0

150 IF E=16 THEN D=D+2^(N-1-F)

160 NEXT F

170 D=5*D/(2^N-1)

180 OUT B+4,1: RETURN

190 REM (c) 1997 Patrick GUEULLE

Его версия на языке TurboPASCAL называется MAXIM 10.PAS.

program dixbits;

uses crt;

var n,f,e: byte;

b,g: integer;

d: real;

procedure init;

begin

b:=$3F8; n:=10;

port[b+4]:=1;

delay(100);

port[b+3]:=64;

delay(500);

end;

procedure acquisition;

begin

port[b+4]:=0; d:=0;

for f:=0 to n-1 do

begin

port[b+4]:=2;

e:=port[b+6] and 16;

port[b+4]:=0;

if e=16 then d:=d+exp((n-1-f)*ln(2));

end;

d:=(5*d)/(exp((n)*ln(2))-1);

end;

procedure affiche;

begin

acquisition;

d:=(int(100*d))/100;

writeln(d);

delay(500);

end;

begin

clrscr;

init;

for g:=1 to 20 do

begin

affiche;

end;

end.

(* COPYRIGHT 1997 Patrick GUEULLE *)

Драйверы для 12-разрядных АЦП

На сервере www.dmk.ru содержатся драйверы для четырех 12-разрядных АЦП:

• АЦП ADC 12 компании PICO Technology;

• версия АЦП на базе LTC 1286 или ADS1286 (рис. 4.1,4.3);

• версия АЦП на базе МАХ 1241 (рис. 4.6);

• версия АЦП на базе LTC 1286 или ADS1286 (рис. 4.13,4.14).

Так как АЦП ADC12 собран на базе LTC 1292, он требует тактовой частоты не менее 100 кГц. В силу этого обстоятельства драйверы ADC12.BAS и даже ADC12.PAS следует с большой осторожностью использовать на старых и медленных ПК, поскольку в таком случае не всегда удается добиться результатов, которые может обеспечить АЦП ADC 10 при тех же условиях. Самая нежелательная ситуация возникает при исполнении программы в окне Windows, что еще больше замедляет работу по сравнению с выполнением непосредственно в DOS.

Иначе говоря, АЦП ADC 12 будет работать с полной отдачей только со своим программным обеспечением PICOSCOPE и PICO LOG, причем под DOS лучше, чем под Windows.

10 REM — ADC12 —

20 KEY OFF: CLS

30 B=&H378: REM LPT1:

40 N=12: REM число разрядов

50 OUT B,1

60 FOR T=0 TO 100: NEXT T

70 OUT B,254

80 FOR T=0 TO 500: NEXT T

90 GOTO 200

100 OUT B,252: D=0: REM ACQUISITION

105 OUT B,254: OUT B,252

106 OUT B,254: OUT B,252

110 FOR F=0 TO N-1

120 OUT B,254

130 E=INP(B+1) AND 128

140 OUT B,252

150 IF E=0 THEN D=D+2^(N-1-F)

160 NEXT F

170 D=5*D/(2^N-1)

180 OUT B,253: RETURN

190 REM (c) 1997 Patrick GUEULLE

program adc12;

uses crt;

var n,f,e: byte;

b,g: integer;

d: real;

procedure init;

begin

b:=$378; n:=12;

port[b]:=1;

delay(100);

port[b]:=254;

delay(500);

end;

procedure acquisition;

begin

port[b]:=0; d:=0;

port[b]:=254; port[b]:=252;

port[b]:=254; port[b]:=252;

for f:=0 to n-1 do

begin

port[b]:=254;

e:=port[b+1] and 128;

port[b];=252;

if e=0 then d;=d+exp((n-1-f)*ln(2));

end;

d;=(5*d)/(exp((n)*ln(2))-1);

port[b]:=253;

end;

procedure affiche;

begin

acquisition;

d:=(int(100*d))/100;

writeln(d);

delay(500);

end;

begin

clrscr;

init;

for g:=1 to 20 do

begin

affiche;

end;

end.

(* COPYRIGHT 1997 Patrick GUEULLE *)

Описанные в книге устройства, работающие через последовательный порт (рис. 4.3 и 4.6), не имеют такого ограничения и могут наилучшим образом использовать точность примененных в них высококачественных АЦП. Только версия с оптоизоляцией (рис. 4.13, 4.14) потребует определенной аккуратности, так как использование оптронов слегка ухудшает характеристики устройства в 12-разрядном режиме.

Из сказанного можно сделать вывод, что с АЦП LTC 1286 или ADS 1286 будут работать программы 12-BITS.BAS и 12-BITS.PAS, c учетом того, что для связи с ПК используется последовательный порт СОМ1 (адрес 3F8h в строке 30).

10 REM — 12BITS —

20 KEY OFF: CLS

30 B=&H3F8: REM COM1:

40 N=12: REM число разрядов

50 OUT B+4,1

60 FOR T=0 TO 100: NEXT T

70 OUT B+3,64

80 TOR T=0 TO 500: NEXT T

90 GOTO 200

100 OUT B+4,0: D=0: REM ACQUISITION

102 OUT B+4,2: OUT B+4,0

103 OUT B+4,2: OUT B+4,0

104 OUT B+4,2: OUT B+4,0

110 FOR F=0 TO N-1

120 OUT B+4,2

130 E=INP(B+6) AND 16

140 OUT B+4,0

150 IF E=16 THEN D=D+2^(N-1-F)

160 NEXT F

170 D=5*D/(2^N-1)

180 OUT B+4,1:RETURN

190 REM (c) 1997 Patrick GUEULLE

program douzebits;

uses crt;

var n,f,e: byte;

b,g: integer;

d: real;

procedure init;

begin

b:=$3F8; n:=12;

port[b+4]:=1;

delay(100);

port[b+3]:=64;

delay(500);

end;

procedure acquisition;

begin

port[b+4]:=0; d:=0;

port[b+4]:=2; port[b+4]:=2;

port[b+4]:=2; port[b+4]:=0;

port[b+4]:=2; port[b+4]:=2;

port(b+4):=2; port[b+4]:=0;

port(b+4):=2; port[b+4]:=2;

port[b+4]:=2; port[b+4]:=0;

for f: = 0 to n-1 do

begin

port[b+4]:=2;

e:=port[b+6] and 16;

port[b+4]:=0;

if e=16 then d:=d+exp((n-1-f)*ln(2));

end;

d:=(5*d)/(exp((n)*ln(2))-1);

port[b+4]:=1;

end;

procedure affiche;

begin

acquisition;

d:=(int(1000*d))/1000;

writeln(d);

delay(500);

end;

begin

clrscr;

init;

for g: =1 to 20 do

begin

affiche;

end;

end.

(* COPYRIGHT 1997 Patrick GUEULLE *)

С АЦП МАХ 1241 (рис. 4.6) будут работать программы MAXIM12.BAS на языке BASIC и MAXIM12.PAS на языке TurboPASCAL.

10 НЕМ — MAXIM12 —

20 KEY OFF: CLS

30 B=&H3F8: REM COM1:

40 N= 12: RЕМ число разрядов

50 OUT B+4,1

60 FOR T=0 TO 100: NEXT T

70 OUT B+3,64

80 FOR T=0 TO 500: NEXT T

90 GOTO 200

100 OUT B+4,0: D=0: REM ACQUISITION

105 OUT B+4,2: OUT B+4,0

110 FOR F=0 TO N-1

120 OUT B+4,2

130 E=INP(B+6) AND 16

140 OUT B+4,0

150 IF E=16 THEN D=D+2^(N-1-F)

160 NEXT F

170 D=5*D/(2^N-1)

180 OUT B+4,1: RETURN

190 REM (c) 1997 Patrick GUEULLE

program maxim12;

uses crt;

var n,f,e: byte;

b,g: integer;

d: real;

procedure init;

begin

b:=$3F8; n:=12;

port[b+4]:=1;

delay(100);

port[b+3]:=64;

delay(500);

end;

procedure acquisition;

begin

port[b+4]:=0; d:=0;

port[b+4]:=2; port[b+4]:=2;

port[b+4]:=2; port[b+4]:=0;

for f:=0 to n-1 do

begin

port[b+4]:=2;

e:=port[b+6] and 16;

port[b+4]:=0;

if e=16 then d:=d+exp((n-1-f)*ln(2))

end;

d:=(5*d)/(exp((n)*ln(2))—1);

port[b+4]:=1;

end;

procedure affiche;

begin

acquisition;

d:=(int(1000*d))/1000;

writeln(d);

delay(500);

end;

begin

clrscr;

init;

for g:=1 to 20 do

begin

affiche;

end;

end.

(* COPYRIGHT 1997 Patrick GUEULLE *)

Прикладные программы

Здесь будет продемонстрировано, как добавление нескольких строк программы к вышеописанным драйверам приносит полезные практические результаты. Читатели должны будут самостоятельно вносить требуемые изменения (часто минимальные), которые определяются конкретными задачами пользователя. В любом случае объединение соответствующего драйвера и прикладной программы выполняется по команде MERGE (в языке BASIC).

Для использования программы VOLTS.BAS совместно с АЦП ADC 10, например, на языке GWBASIC или эквивалентном надо написать следующие строки:

load "ADC10" (загрузка драйвера);

затем

MERGE "VOLTS" (добавление прикладной программы).

По команде RUN запускается полученная программа, которую можно сохранить целиком по команде:

SAVE "ИМЯ", А (если желательно сохранить файл в текстовом формате);

или просто:

SAVE "ИМЯ" (если желательно сохранить его в наиболее компактном виде).

Будет целесообразно произвести полную компиляцию составленной программы, а также и программы на языке TurboPASCAL, в файл ИМЯ.EXE, исполняемый непосредственно под DOS или Windows. Для этого надо иметь в распоряжении какой-нибудь компилятор, например, Turbo BASIC или Quick BASIC.

Цифровой вольтметр

Очень короткая программа VOLTS.BAS прекрасно подходит для первых шагов в изучении только что собранного или купленного АЦП, но она также пригодна и для более общих задач.

200 REM VOLTS

210 GOSUB 100

220 D=INT(100*D)/100

230 LOCATE 1,1

240 PRINT USING "##.##"; D

250 GOTO 210

260 REM (c) 1997 Patrick GUEULLE

Программа выводит в верхнем левом углу экрана величину напряжения (в вольтах), поданного на вход модуля преобразователя. Эта величина подвергается простейшей обработке, поэтому данная программа — одна из самых быстродействующих в «библиотеке», даже при использовании очень медленных ПК.

Применение команды LOCATE, каждый раз возвращающей курсор в верхний левый угол экрана, приводит к замещению старого значения новым. При этом индикация постоянно обновляется со скоростью, равной частоте взятия выборок, т. е. совершенно так же, как в классическом цифровом вольтметре.

Надо обратить внимание на способ, посредством которого измеренная величина округляется до двух знаков после запятой (строка 220), а потом выводится в жестком формате, наиболее соответствующем выбранной точности (строка 240). Подобное решение будет часто использоваться и в дальнейшем.

Эта программа рассчитана на работу совместно с 8- или 10-разрядным АЦП (точность 1 %), но ее можно оптимизировать и для работы с 12-раз рядным АЦП, исправив строки 220 и 240 следующим образом и обеспечив при этом три индицируемых знака после запятой (т. е. точность 0,1 %):

220 D=INT(1000*D)/1000

240 PRINT USING "##.###"; D

Не стоит также упускать из виду, что драйвер не выполняет никаких округлений, полностью соблюдая точность преобразователя. Только прикладная программа в соответствии с поставленной задачей должна так или иначе использовать получаемую точность, и не более того. Вывод трех знаков после запятой для 8-разрядного АЦП будет излишним, так как третий знак при этом не несет никакого смысла.

200 REM — BARRE —

210 LOCATE 6,1

220 FOR H=1 TO 5

230 PRINT "I….!..";

240 NEXT H

250 PRINT " I "

260 LOCATE 7,1

270 PRINT "0___1___2___"

280 PRINT "3___4___5"

290 GOSUB 100

300 D=INT(10*D)

310 LOCATE 5,1

320 PRINT SPC (D);" I";

330 PRINT SPC (50-D)

340 GOTO 290

350 REM (c) 1997 Patrick GUEULLE

Программа BARRE.BAS, в свою очередь, показывает, как легко можно организовать вывод аналоговой штриховой шкалы.

Эта форма представления результата, менее точная, чем цифровая индикация, гораздо более удобна, когда требуется лишь оценить направление и скорость изменений или отклонений измеряемой величины, например, при ручной регулировке или настройке. В приведенном примере шкала построена на базе ASCII символов, но такая же шкала может быть выполнена и в графическом режиме экрана.

Усредняющий фильтр

Наиболее распространенный способ подавления быстрых флуктуаций (часто паразитных) в медленно изменяющемся сигнале состоит в вычислении среднего значения нескольких выборок, относящихся к одному интервалу дискретизации. Конечно, этот способ может замедлить работу системы, и поэтому он применен в двух программах, выводящих результат один раз в секунду (SECONDE.BAS) и один раз в минуту (MINUTE.BAS).

200 REM — SECONDE —

210 Q=0: S=0: GOSUB 100

220 LOCATE 5,1

230 PRINT "Идет измерение…"

240 H$=TIME$

250 IF H$<>TIME$ THEN BEEP: GOTO 290

260 GOSUB 100

270 S=S+D: Q=Q+1

280 GOTO 250

290 D=INT(100*S/Q)/100

300 LOCATE 1,1

310 PRINT USING "##.##";D;

320 PRINT "(среднее за"; Q; " измерений)"

330 GOTO 210

340 REM (c) 1997 Patrick GUEULLE

Кроме вычисления результата измерений, каждая из этих программ выводит и количество измерений, которое было использовано при его вычислении. Это позволяет точно оценить реальное быстродействие сиcтемы в зависимости от применяемого ПК Так, можно получить 3–4 измерения в секунду на «антикварном» ПК 8088/4,77 МГц, 60–70 измерений в секунду на 386SX25 и 700-1000 измерений в секунду на 486 DX/133 МГц, что все же достаточно далеко от современных скоростей, но весьма почетно для BASIC-интерпретатора.

Стоит обратить внимание на то, как использована зарезервированная цикловая переменная TIМЕ$. Она позволяет при любой частоте процессора получить достаточно точную шкалу секунд, минут и даже часов. А если понадобится осуществлять, например, одно измерение за несколько дней, то можно использовать переменную DATES.

200 REM — MINUTE —

210 Q=0: S=0: GOSUB 100

220 LOCATE 5,1

230 PRINT "Идет измерение…"

240 H$=LEFT$(TIME$,5)

250 IF H$<>LEFT$ (TIME$, 5) THEN BEEP: GOTO 290

260 GOSUB 100

270 S=S+D: Q=Q+1

280 GOTO 250

290 D=INT(100*S/Q) /100

300 LOCATE 1,1

310 PRINT USING "##.##";D;

320 PRINT "(среднее за";Q; " измерений)"

330 GOTO 210

340 REM (c) 1997 Patrick GUEULLE

Пиковый регистратор минимумов и максимумов

Достаточно добавить несколько строк на языке BASIC, чтобы получить режим запоминания минимумов и максимумов измеряемого напряжения, с возможностью обнуления результатов путем нажатия на клавишу пробела на клавиатуре ПК.

200 REM — MINMAX —

210 PRINT "нажать клавишу пробела для перезапуска"

220 I=5: А=0: Q=0: GOSUB 100

230 FOR G=1 TO 100

240 GOSUB 100: Q=Q+D

250 NEXT G

260 Q=Q/100

270 IF Q<=I THEN I=Q: S$=TIME$

280 IF Q>=A THEN A=Q: T$=TIME$

290 LOCATE 3,5: PRINT "Mes: ";

300 PRINT USING"##.##"; INT(100*Q)/100;

310 PRINT " "+TIME$

320 LOCATE 5,5: PRINT "Макс: ";

330 PRINT USING "##.##"; INT(100*A) /100

340 PRINT " " + T$

350 LOCATE 7,5: PRINT "Мин: ";

360 PRINT USING "##.##“; INT(100*1)/100

370 PRINT " " + S$

380 IF INKEY$=CHR$(32) THEN 220

390 Q=0: GOTO 230

400 REM (c) 1997 Patrick GUEULLE

Это добавление было сделано в программе MINMAX.BAS; также в нее были включены операторы вывода трех значений времени (в часах, минутах и секундах):

• время текущего измерения;

• время регистрации максимума;

• время регистрации минимума.

Надо отметить, что мультиметр редко дает подобные возможности, столь легко реализованные в виртуальном приборе.

Регистратор длительных процессов

В этом разделе будет рассказано о том, как за несколько десятков долларов достичь результатов, обычно возможных только при использовании ленточных или магнитных регистраторов — приборов, стоящих в сотни раз дороже! Вместо того чтобы чертить на бумаге кривую в реальном масштабе времени, что технически трудновыполнимо, гораздо проще накапливать данные в файле на диске, а уже потом обрабатывать их.

Программа сбора данных (FICHIER.BAS), которую, конечно же, надо дополнить драйвером используемого АЦП при помощи команды MERGE, исключительно проста.

200 REM — FICHIER —

210 GOSUB 100

220 OPEN "dat.dat" FOR OUTPUT AS #1

230 PRINT "Идут измерения… "

240 FOR G=0 TO 639

250 GOSUB 100

260 PRINT# 1, D

270 FOR T=0 TO 2000: NEXT T

280 NEXT G: CLOSE# 1

290 REM (c) 1997 Patrick GUEULLE

В оригинальной версии эта программа создает файл DAT.DAT, содержащий 640 выборок, которые производятся с частотой дискретизации, определяемой в строке 270 (простая задержка). Конечно, число 2000 используется лишь при первых попытках, а потом надо будет подобрать эту величину в соответствии со скоростью используемого ПК и конкретной задачей.

В самых сложных случаях можно, по примеру SECONDE.BAS и MINUTE.BAS, использовать переменную TIME$ для улучшения точности и значительного снижения частоты дискретизации.

Число 640, в свою очередь, соответствует числу точек по горизонтали обычного графического экрана, что позволяет вывести график кривой непосредственно на экран, перед тем как скопировать его на бумагу, если это необходимо.

Графопостроитель

Вывод информации на экран осуществляет программа CGAVISU.BAS или VGAVISU.BAS. Вторая из них применяется, если желательно воспользоваться большим разрешением, соответствующим экранам VGA.

500 REM — CGAVISU —

510 OPEN "dat.dat" FOR INPUT AS #1

520 INPUT#1,Y: Y=199-INT(Y*199/5)

530 PSET(0,Y)

540 FOR X=1 TO 639

550 INPUT#1,Y: Y=199-INT(Y*199/5)

560 LINE — (X, Y)

570 NEXT X

580 CLOSE

590 REM (c) 1997 Patrick GUEULLE

500 REM — VGAVISU —

510 OPEN "dat.dat" FOR INPUT AS #1

520 INPUT#1,Y: Y=349-INT(Y*349/5)

530 PSET(0,Y)

540 FOR X=1 TO 639

550 INPUT#1,Y: Y=349-INT(Y*349/5)

560 LINE — (X, Y)

570 NEXT X

580 CLOSE

590 REM (c) 1997 Patrick GUEULLE

Очевидно, каждую из программ надо объединить с экранным драйвером CGA.BAS или VGA.BAS, соответствующим используемому оборудованию.

300 REM — CGA —

310 SCREEN 2

320 KEY OFF: CLS

330 LINE(0,0)-(0,199)

340 FOR Y=0 TO 199 STEP 20

350 LINE(0,Y)-(639,Y),&HCCCC

360 NEXT Y

370 FOR X=0 TO 639 STEP 32

380 LINE(X,0)-(X,199),&HCCCC

390 NEXT X

400 LINE(639,0)-(639,199)

410 LINE(0,199)-(639,199),&HCCCC

420 REM (c) 1997 Patrick GUEULLE

300 REM VGA

310 SCREEN 9

320 KEY OFF: CLS

330 LINE(0,0)-(0,349)

340 FOR Y=0 TO 349 STEP 35

350 LINE(0,Y)-(639,Y),&HCCCC

360 NEXT Y

370 FOR X=0 TO 639 STEP 32

380 LINE(X,0)-(X,349),&HCCCC

390 NEXT X

400 LINE(639,0)-(639,349)

410 LINE(0,349)-(639,349),&HCCCC

420 REM (c) 1997 Patrick GUEULLE

Это объединение можно сделать следующим образом:

LOAD "CGA" (загрузка драйвера);

затем

MERGE "CGAVISU" (добавление программы вывода на экран).

Полученная программа теперь может быть сохранена под каким-либо именем при помощи обычной команды SAVE.

На рис. 5.11 показан результат вывода на бумагу с использованием буфера обмена Windows, кривой разряда конденсатора емкостью 4,7 мкФ через входное сопротивление АЦП. Эта кривая была получена на экране CGA (320x200 точек).

Рис 5.11. Результат, полученный в режиме CGA

Рис. 5.12 воспроизводит ту же запись, пересчитанную для вывода на экран VGA.

Рис 5.12. Результат, полученный в режиме VGA

Обеспечение точной временной развертки

Для приложений, требующих точной регистрации параметра «время», можно использовать программу

TIME.BAS, записывающую в файл DAT.DAT значение переменной TIMES вместе с измеренной величиной напряжения.

200 REM — TIME —

210 GOSUB 100

220 OPEN "dat.dat" FOR OUTPUT AS #1

230 PRINT "Идут измерения "

240 FOR G=0 ТО 639

250 GOSUB 100

260 PRINT#1,D,TIME$

270 FOR T=0 TO 2000: NEXT T

300 REM (c) 1997 Patrick GUEULLE

Понятно, что для полной обработки такого файла потребуются специальные программы. Можно использовать как большие коммерческие пакеты, статистические или графические, так и простые программы TCGA.BAS и ТVGA.ВAS.

500 REM — TCGA —

510 OPEN "dat.dat" FOR INPUT AS #1

520 INPUT#1,Y: Y=199-INT(Y*199/5)

530 INPUT#1,S$: PSET(0, Y)

540 FOR X=1 TO 639

550 INPUT#1,Y: Y=199-INT(Y*199/5)

560 INPUT#1,T$: LINE-(X,Y)

570 NEXT X: CLOSE #1

580 LOCATE 1,1: PRINT S$

590 LOCATE 1,73: PRINT S$

600 REM (C) 1997 Patrick GUEULLE

500 REM — TVGA —

510 OPEN "dat.dat" FOR INPUT AS #1

520 INPUT#1,Y: Y=349-INT(Y*349/5)

530 INPUT#1,S$: PSET(C,Y)

540 FOR X=1 TO 639

550 INPUT#1,Y: Y=349-INT(Y*349/5)

560 INPUT# 1,T$: LINE-(X, Y)

570 NEXT X: CLOSE#1

580 LOCATE 1,1: PRINT S$

590 LOCATE 1,73: PRINT S$

600 REM (c) 1997 Patrick GUEULLE

Осциллограф

Во многих ситуациях бывает нужно наблюдать формирование кривой в реальном масштабе времени прямо на экране ПК. При этом должна быть предусмотрена возможность распечатки изображения на принтере после вывода на экран или даже в процессе вывода, при включении опции «печать экрана». Такой результат очень просто получить, совместив три программы:

• драйвер АЦП;

• драйвер экрана;

• прикладную программу.

Первые два модуля уже известны, а в качестве третьего может быть использована либо программа CDIRECT.BAS (с экраном CGA), либо VDIRECT.BAS (с экраном VGA).

85 GOSUB 300

200 REM — CDIRECT —

210 GOSUB 100: PSET(0,0)

220 FOR G=1 TO 639

230 GOSUB 100

240 Y=D: GOSUB 500

250 FOR T=0 TO 2000: NEXT T: REM развертка

260 NEXT G

270 END

415 X=0: RETURN

500 Y=199-INT(Y*199/5)

510 LINE-(X, Y)

520 X=X+1

530 RETURN

540 REM (c) 1997 Patrick GUEULLE

85 GOSUB 300

200 REM — VDIRECT —

210 GOSUB 100: PSET(0,0)

220 FOR G=1 TO 639

230 GOSUB 100

240 Y=D: GOSUB 500

250 FOR T=0 TO 2000: NEXT T: REM развертка

260 NEXT G

270 END

415 X=0: RETURN

500 Y=349-INT(Y*349/5)

510 LINE-(X, Y)

520 X=X+1

530 RETURN

540 REM (c) 1997 Patrick GUEULLE

Потребуются следующие команды:

LOAD "MAXIM10" (загрузка драйвера для МАХ 1243);

MERGE "VGA" (добавление драйвера для экрана VGA);

VERGE "VDIRECT" (добавление модуля осциллографа VGA).

На рис. 5.13 приведена полученная таким образом осциллограмма синусоидального сигнала с амплитудой 1 В и частотой 4 Гц на выходе функционального генератора, выполненного на базе широко распространенной микросхемы МАХ 038. В данном случае 10-разрядный АЦП работал с ПК модели 486/133 МГц с экраном VGA.

Рис 5.13. Осциллогромма, полученная в режиме VGA

Для того чтобы приспособить осциллограф к той или иной практической задаче, в программу достаточно внести минимальные изменения. Для получения непрерывной развертки без очистки экрана (режим длительного послесвечения) следует исправить строку 270:

270 Х=0: GOTO 220

Для получения того же результата, но с очисткой экрана на каждом * обратном ходе» развертки (режим короткого послесвечения), надо записать:

270 CLS: GOTO 85

Для получения режима «ждущей синхронизации» следует добавить только одну строку:

215 IF D=0 THEN 210

Эта команда позволяет дождаться положительного напряжения на входе АЦП для запуска развертки. Конечно, можно выбрать и любую другую отличную от нуля величину в диапазоне от 0 до +5 В, а также использовать условные операторы «больше, чем» или «меньше, чем».

Можно также предусмотреть и вход внешней развертки, использовав либо второй АЦП, либо один из цифровых входов (линии /АСК или BUSY параллельного порта, игровой порт и т. п.).

Возможности многоканальных измерений

Подключение нескольких АЦП к параллельным и последовательным портам позволяет оснастить ПК несколькими аналоговыми входами, не используя при этом дорогие АЦП с мультиплексными входами. Возможны любые сочетания, как в плане аппаратных, так и программных средств.

Самый распространенный случай — это создание двухлучевого виртуального осциллографа, но можно принять в расчет и задачи, требующие режима работы «Х-Y», а также просто запись в файл более или менее взаимосвязанных последовательностей данных.

Допускается огромное множество различных комбинаций — все их даже не перечислить. Скажем, приобретя один готовый АЦП, второй можно собрать самостоятельно, чтобы не платить дважды за одно и то же программное обеспечение. В некоторых случаях может понадобиться использование двух абсолютно идентичных АЦП.

5 REM — BICOURBE —

10 REM — MAXIM12 —

20 KEY OFF: CLS

30 B=&H3F8: REM COM1:

40 N=12: REM число разрядов

50 OUT B+4,1

60 FOR T=0 TO 100:NEXT T

70 OUT B+3,64

80 FOR T=0 TO 500: NEXT T

84 GOSUB 1000

85 GOSUB 300

90 GOTO 200

100 OUT B+4,0: D=0: REM ACQUISITION

105 OUT B+4,2: OUT B+4,0

110 FOR F=0 TO N-1

120 OUT B+4,2

130 E=INP(B+6) AND 16

140 OUT B+4,0

150 IF E=16 THEN D=D+2^(N-1-F)

160 NEXT F

170 D=5*D/(2^N-1)

180 OUT B+4,1: RETURN

200 REM — VDIRECT —

210 GOSUB 100: GOSUB 1090

220 FOR G=1 TO 639

230 GOSUB 100

240 Y=D: GOSUB 500

241 GOSUB 1090

242 Y=Q: GOSUB 600

250 FOR T=0 TO 2000: NEXT T: REM развертка

260 NEXT G

270 END

300 REM — VGA —

310 SCREEN 9

320 KEY OFF: CLS

330 LINE(0,0)-(0,349),2

340 TOR Y=0 TO 349 STEP 35

350 LINE(0,Y)-(639,Y),2,&HCCCC

360 NEXT Y

370 FOR X=0 TO 639 STEP 32

380 LINE(X,0)-(X,349),2,&HCCCC

390 NEXT X

400 LINE(639,0)-(639,349),2

410 LINE(0,349)-(639,349),2,&HCCCC

415 X=0: RETURN

500 Y=349-INT(Y*349/5)

502 PSET(X,V)

505 V=Y

510 LINE-(X,V),12

520 X=X+1

530 RETURN

600 Y=349-INT(Y*349/5)

602 PSET(X,W)

605 W=Y

610 LINE-(X,W),14

630 RETURN

1000 REM 12BITS

1010 KEY OFF: CLS

1020 C=&H2F8: REM COM2:

1030 M=12: REM число разрядов

1040 OUT C+4,1

1050 FOR T=0 TO 100:NEXT T

1060 OUT C+3,64

1070 FOR T=0 TO 500:NEXT T

1080 RETURN

1090 OUT C+4,0: Q=0: REM ACQUISITION

1100 OUT C+4,2: OUT C+4,0

1110 OUT C+4,2: OUT C+4,0

1120 OUT C+4,2: OUT C+4,0

1130 FOR F=0 TO M-1

1140 OUT C+4,2

1150 E=INP(C+6) AND 16

1160 OUT C+4,0

1170 IF E=16 THEN Q=Q+2^(M-1-F)

1180 NEXT F

1190 Q=5*Q/(2^M-1)

1200 OUT C+4,1: RETURN

1210 REM (c) 1997 Patrick GUEULLE

Программа BICOURBE.BAS не должна рассматриваться только как иллюстрация того, что можно получить при комбинировании программных модулей, приведенных в данной книге. Это образец подхода, называемого англоговорящими программистами quick and dirty («быстро и грязно»), т. е. здесь отсутствует всякое стремление к структурированию и четкости. Программа работает, и это главное!

В частности, неоднократно применялась функция RENUM языка BASIC для переопределения в разных местах той или другой подпрограммы.

В том виде, в каком она приведена, программа управляет сразу двумя 12-разрядными АЦП — одним на базе МАХ 1241 и другим на базе LTC 1286. Для каждого из них определен один из каналов двухлучевого осциллографа (рис 5.14), в котором разные цвета лучей позволяют без проблем отличать один АЦП от другого.

Действительно, язык BASIC легко позволяет задавать атрибуты, определяющие цвет того или иного графического элемента, лишь бы его поддерживал графический экран. Ниже приведены коды цветов.

0 черный

1 синий

2 зеленый

3 голубой

4 красный

5 пурпурный

6 коричневый

7 белый (цвет по умолчанию)

8 серый

9 светло-синий

10 светло-зеленый

11 светло-голубой

12 светло-красный

13 светло-пурпурный

14 желтый

15 ярко-белый

Рис. 5.14. Пример работы виртуального двухлучевого осциллографа

6. ДАТЧИКИ И ПРИНАДЛЕЖНОСТИ

Аналого-цифровые преобразователи, которые рассматриваются на страницах этой книги, способны обработать любое напряжение в диапазоне от 0 до +5 В, но они рассчитаны и на более широкое использование, так как могут работать с датчиками или устройствами нормирования сигналов, зачастую самыми простыми. При этом с их помощью можно измерять большинство основных физических величин, даже такие напряжения и токи, которые никак не соответствуют рабочему диапазону АЦП.

ВХОДНОЙ УСИЛИТЕЛЬ

При помощи небольшого устройства, которое будет описано ниже, могут быть легко сняты два основных ограничения, присущих простейшим АЦП: входной диапазон от 0 до +5 В и неспособность работать с переменными напряжениями без постоянной составляющей.

Например, устройство смещения нуля и усилитель с переключаемыми коэффициентами усиления 1, 10 и даже 100 сильно расширят область применения АЦП ADC 10 и того мощного программного обеспечения, которое к нему прилагается. Этот АЦП можно будет использовать даже для оцифровки звука!

Следует учесть, что подача переменного напряжения с нулевым средним значением (иными словами, без постоянной составляющей) на вход аналого- цифрового преобразователя с входным диапазоном 0–5 В приводит к эффекту однополупериодного выпрямления. Результаты измерений, выполненных без учета этого обстоятельства, конечно, окажутся неверными. Данная ситуация аналогична той, когда луч обычного осциллографа расположен у нижнего края экрана, а не в середине, или когда перо регистратора установлено на один из краев бумаги.

В обоих случаях регулировка положения луча или установки нуля позволяет решить проблему путем добавления регулируемого постоянного напряжения смещения к входному сигналу.

Хотя входной диапазон 0–5 В и подходит для решения многих задач, при измерениях с помощью 8-разрядного АЦП все же желательно использовать максимально возможное количество из 256 уровней, т. е. необходимо уложиться в последнюю треть шкалы.

К примеру, входное напряжение, изменяющееся в пределах от 0 до 500 мВ, при преобразовании займет всего 25 уровней, что соответствует точности 4 %, тогда как АЦП наверняка имеет точность не ниже 1 %!

12-разрядные АЦП решают эту проблему, однако же не снимают проблему обработки сигналов переменного тока. Входное сопротивление большинства микросхем АЦП значительно меньше 1 МОм, и из-за этого обычный делитель 1/10 будет слишком сильно подавлять сигналы, амплитуда которых лишь немногим больше уровня 5 В.

Предварительный усилитель с коэффициентом усиления 10 позволит измерять напряжения с уровнем до 500 мВ с такой же точностью, с которой сам АЦП оцифровывает напряжения с уровнем до 5 В. При входном сопротивлении 1 МОм предусилитель с единичным усилением позволит работать на пределе измерения «50 В» с использованием обычного делителя 1/10.

С учетом простоты схем описываемых АЦП был разработан самый простой усилитель. Действительно, не нужны ни широкая полоса (достаточно нескольких килогерц), ни высокая точность (достаточно 1 %), ни смещение нуля на уровне микровольт, поскольку 8-разрядный АЦП с трудом определяет разницу между величинами 0 В и 20 мВ.

Не надо рассматривать схему, приведенную на рис. 6.1, как образец высокоточного прибора — это небольшое, но полезное устройство, предоставляющее немалые возможности.

Рис. 6.1. Принципиальная схема входного усилителя

Главный компонент схемы — сдвоенный операционный усилитель LM358, разработанный очень давно и широко распространенный. Он может работать с напряжениями, очень близкими к нулю, даже без двухполярного питания. Простой девятивольтовой гальванической батарейки вполне хватит для питания описываемого устройства, которое потребляет ток не более одного миллиампера (500 часов непрерывной работы с новой щелочной батареей).

Из напряжения питания +9 В микросхемой TLE2425 производства компании Texas Instruments формируется стабильное напряжение 2,5 В. Обычно эта микросхема используется в устройствах для получения «виртуальной земли».

Хотя напряжения 2,5 В даже при единичном усилении вполне достаточно для сдвига нуля в середину рабочего диапазона 0–5 В, при отсутствии микросхемы TLE2425 допустимо применение интегрального стабилизатора 78L05. При этом параметры будут менее стабильны, а потребление тока увеличится. Расположение выводов обеих микросхем одинаково.

Многооборотный потенциометр R9 с сопротивлением 10 кОм служит для подачи части выходного напряжения микросхемы TLE2425 на резисторный сумматор. На этот же сумматор поступает и входное напряжение, которое может подаваться напрямую (разъем DC — открытый вход) или через разделительный конденсатор Сехt (разъем АС — закрытый вход), как и у обычных осциллографов.

Использование входа АС позволяет убрать из входного сигнала постоянную составляющую (обычно присутствующую), а затем при помощи потенциометра R9 подобрать такую ее величину, которая максимально упростит проведение измерений. Емкость неэлектролитического конденсатора Сeхt (желательно, чтобы он был рассчитан на напряжение 400 В) будет зависеть от условий измерений: величина 1 мкФ позволяет работать на очень низких частотах, а величины 0,1 мкФ достаточно для работы в звуковом диапазоне.

Номиналы резисторов (с точностью 1 %) были рассчитаны таким образом, чтобы первый каскад имел единичное усиление, а входное сопротивление составляло 1 МОм. Резистор с сопротивлением 500 кОм можно получить, соединив параллельно два резистора по 1 МОм каждый.

Второй каскад имеет переключаемый коэффициент усиления 1, 10,100, а многооборотный потенциометр R10 22 кОм позволяет либо точно откалибровать усиление при настройке, либо регулировать его плавно — так же, как это можно проделать при помощи обычного осциллографа, вращая ручку «Усиление плавно».

Конечно, ничто не мешает использовать иные номиналы резисторов для получения других коэффициентов усиления: 2, 5 и т. д.

Для реализации коэффициента усиления 100 в цепи обратной связи операционного усилителя используется резистор с номиналом 1 МОм, для коэффициента усиления 10 — параллельное соединение резисторов 100 кОм и 1 МОм. Для реализации единичного усиления (схема повторителя) применена обычная перемычка.

Для обеспечения высокой точности устройства калибровку надо проводить при коэффициенте усиления 10, так как режим «х100» используется редко и, кроме того, в этом режиме операционный усилитель LM 358 подвержен влиянию эффекта смещения нуля (которое едва ли будет скомпенсировано полностью).

Следует обратить внимание на то, что, если не используется версия с оптронной развязкой, общий провод усилителя (в частности, входных разъемов) соединен с общим проводом АЦП, и, следовательно, с корпусом ПК. Очевидно, что непреднамеренная подача слишком большого напряжения на вход усилителя или самого АЦП может привести и к его попаданию на материнскую плату ПК.

Описываемое устройство нельзя рассматривать как защитное: оно не предназначено для этой цели. Пользователь при проведении измерений сам должен предпринять все необходимые меры предосторожности и помнить, что ПK более уязвим, нежели осциллограф или мультиметр.

Рассмотрим конструкцию усилителя. На рис. 6.2 приведена топологическая схема печатной платы, на которой размещены все элементы устройства.

Рис 6.2. Топологическая схема печатной платы входного усилителя

Монтажная схема приведена на рис. 6.3; на ней показаны также соединительные колодки для подключения проводов входных и выходных сигналов. При необходимости можно подключить внешний источник питания вместо гальванической батареи 9 В. Это может понадобиться, например, при проведении очень длительного измерительного процесса.

Рис. 6.3. Монтажная схема входного усилителя

Внешний вид платы с установленными элементами показан на рис. 6.4.

Рис. 6.4. Внешний вид плоты входного усилителя

Вне платы будет смонтирован только входной конденсатор Cext, размеры которого могут быть весьма большими, если выбран номинал 1 мкФ х 400 В.

Многооборотные подстроенные потенциометры R9 и R10 могут предназначаться как для печатного монтажа, так и для монтажа на панель. Второй подход более предпочтителен, особенно для регулятора установки нуля, пользоваться которым придется довольно часто.

Выбор коэффициента усиления может осуществляться при помощи блока перемычек (при редком использовании) либо при помощи тумблера или переключателя (при регулярном использовании). Но в большинстве случаев достаточно тумблера с положениями «х1» и «х10».

Размеры платы позволяют разместить се вместе с гальванической батареей в металлическом корпусе типа ЕМ 06/03 ESM. Несколько отверстий в корпусе позволят установить все органы управления, а также, если понадобится, две приборные розетки BNC (СР50-73).

Устройство очень легко настроить, даже не подавая на нею внешний входной сигнал. При установке переключателя перемычек в положение «единичное усиление» и в режиме «открытый вход» (DC) необходимо «закоротить» вход усилителя. Простое вращение ручки регулятора «Установка нуля» должно привести к изменениям показаний виртуального вольтметра в пределах от 0 до 2,5 В (показания должны увеличиваться в десять раз при переходе на режим «х10»). В таком случае, естественно, АЦП не может обработать входное напряжение выше 5 В и будет формировать кодовую комбинацию, соответствующую максимуму шкалы.

ДАТЧИК ТЕМПЕРАТУРЫ

Среди всего многообразия датчиков, которые можно подключать к АЦП для обработки с помощью виртуального измерительного комплекса, одним из самых полезных будет датчик температуры. Обладая широким рабочим диапазоном, он может применяться и для регистрации метеорологических процессов, и для анализа температурного режима аккумулятора при быстром заряде, и даже для проверки работы автоматики холодильных камер.

Широкие возможности масштабирования, закладываемые в ПО для виртуального измерительного комплекса, позволяют существенно упростить предварительную обработку сигнала или даже полностью от нее отказаться.

С учетом исключительной простоты схемотехники предлагаемых АЦП логично использовать такой же простой датчик температуры. Не может быть и речи о платиновой проволоке, поскольку ее низкая чувствительность и нелинейность параметров потребуют применения нескольких операционных усилителей; не подойдут и термопары, так как их компенсатор «холодного спая» сложен по конструкции и требует очень серьезной настройки.

Терморезисторы с положительным или отрицательным температурным коэффициентом сопротивления (ТКС) очень чувствительны к изменениям температуры. Они очень просто подключаются, но их характеристики нелинейны, так что их чрезвычайно сложно калибровать.

В температурном диапазоне от -50 °C до +150 °C большие преимущества имеют кремниевые датчики. Достаточно чувствительные и часто обладающие хорошей линейностью характеристик, они, ко всему прочему, дешевы и доступны. Надо ли искать им замену, если известно, что по точности они сравнимы с АЦП, которые описываются в этой книге?

Складывается впечатление, что микросхема LM 335 (или ее варианты LM 135 и LM 235) создана специально для решения данной проблемы! Эта микросхема выпускается многими производителями, в том числе, компаниями National Semiconductor и SGS-Thomson. Она имеет корпус транзисторного типа и может рассматриваться как стабилитрон с температурным коэффициентом напряжения (ТКН), равным 10 мВ/°К. Рабочий диапазон температур микросхемы LM 335 лежит в границах от -40 °C до +100 °C (для варианта LM 135 он составляет от -50 °C до +150 °C). При этом нулевое выходное напряжение соответствует температуре абсолютного нуля 0 °К (-273,15 °C).

По характеристике, приведенной на рис. 6.5, видно, что выходное напряжение меняется от 2,23 В при -50 °C (223 °К) до 4,23 В при + 150 °C (423 °К). Эти параметры удачно соотносятся с рабочим диапазоном описываемых АЦП — от 0 до 5 В.

Рис. 6.5. Температурная характеристика микросхемы LM 335

Если не ввести в схему элементы калибровки, то несоответствие между температурой и выходным напряжением в наихудшем случае может достигать 9 °К. Следовательно, для выполнения задач, рассматриваемых в книге, требуется предусмотреть подстроечный резистор для калибровки. С учетом этого получается, как и предполагалось, исключительно простая схема, приведенная на рис. 6.6.

Рис 6.6. Принципиальная схема датчика температуры

Надо заметить, что для обеспечения нормальной работы этого датчика достаточно одного резистора и небольшой гальванической батареи 9 В, тогда как для большинства изделий других производителей потребовался бы источник стабильного тока.

После калибровки (обычно при температуре +25 °C) точность получаемых результатов в зависимости от группы датчика оказывается лучше чем ±(1–2) °С. Самой точной является группа «А». Это хорошо соотносится с точностью 1 % и разрешением 20 мВ (то есть 2 °C) 8-разрядного АЦП.

При использовании 10- или 12-разрядных АЦП необходимо использовать микросхему датчика группы «А» и уделить особое внимание калибровке.

Печатная плата датчика имеет примерно такие же размеры, как девятивольтовая гальваническая батарея. Топологическая схема печатной платы приведена на рис. 6.7.

Рис. 6.7. Топологическая схема печатной платы датчика температуры

Для сборки схемы датчика следует руководствоваться монтажной схемой (рис. 6.8).

Рис. 6.8. Монтажная схема датчика температуры

Стоит обратить внимание на то, что на плате установлены практически все компоненты, а также разъем гальванической батареи и соединительная колодка, подключение к которым может осуществляться самыми разными способами. Внешний вид платы датчика с установленными элементами показан на рис. 6.9.

Рис. 6.9. Внешний вид платы датчика температуры

Через соединительную колодку с помощью одной пары проводов датчик температуры подключается к АЦП, а с помощью другой пары на плату можно подать напряжение питания от 9 до 12 В, заменив гальваническую батарею на внешний источник. Эта же соединительная колодка позволит, при необходимости, с помощью трех проводов длиной до одного метра вынести датчик на микросхеме LM 335 на безопасное расстояние, чтобы не подвергать остальные устройства измерительного комплекса вредному воздействию.

Для работ, связанных с погружением в жидкие среды, будет необходимо изолировать датчик, поместив его в чехол из термореактивного материала, причем достаточно тонкого, чтобы тепловая инерционность датчика не сильно увеличилась. Идеальный вариант — это чехол, заполненный термоклеем. Понятно, что места паяных соединений проводов и выводов датчика перед размещением в изолирующем чехле для предотвращения замыканий должны быть изолированы отрезками гибкой пластиковой трубки.

Так как датчик определяет точность всего измерительного тракта, калибровать его предельно аккуратно. В принципе, калибровку следует проводить при температуре 25 °C, но ничто не мешает провести ее при другой температуре в пределах от 20° до 30 °C. При этом надо помнить, что температура в разных частях помещения может быть неодинаковой. Поэтому эталонный термометр, как можно более точный, должен располагаться в непосредственной близости от калибруемого датчика на микросхеме LM 335, и, кроме того, нужно выждать некоторое время, чтобы достичь теплового равновесия.

Напряжение калибровки зависит от температуры окружающей среды: например, при температуре 20 °C (или 293 °К) выходное напряжение датчика нужно установить на величину 2,93 В.

Можно рекомендовать и более простой способ калибровки при 0 °C, не требующий образцового термометра. Для этого достаточно проделать в куске льда отверстие (например, остывающим паяльником) и поместить корпус LM 335 (но не выводы!) в талую воду, которая начнет быстро заполнять углубление, — это «тающий лед», температура которого по определению равна 0 °C. Затем надо будет при помощи многооборотного подстроечного резистора отрегулировать датчик до получения на табло виртуального вольтметра показания 2,73 В.

Важно выполнять калибровку датчика именно с тем АЦП, с которым этот датчик будет работать впоследствии, для того чтобы как можно лучше скомпенсировать его погрешность.

Естественно, оба вышеизложенных метода можно комбинировать для получения максимальной точности, хотя при этом не стоит рассчитывать на получение общей точности, высшей ±1 С.

Большинство задач предполагает проведение динамической регистрации изменений температуры за тот или иной период времени. Однократные измерения температуры гораздо удобнее проводить при помощи обычного термометра.

Пакет PICOLOG, работающий со всеми изделиями компании PICO Technology, позволяет выполнять измерения с временными интервалами от нескольких минут до многих месяцев и даже лет. Помимо этого, он дает возможность провести масштабирование результатов измерений, а при использовании датчика температуры произвести преобразование «вольты — градусы Цельсия». (Вначале надо скорректировать наклон характеристики преобразования для получения результатов в градусах по Кельвину, а затем произвести коррекцию смещения для перехода к величинам, измеренным в градусах Цельсия.)

Какой бы АЦП ни использовался (ADC 10 или ADC 12), необходимая величина коррекции смещения в меню «Настройка линейной шкалы» для параметра «Температура» равна -273. Коэффициент коррекции наклона при работе с ADC 10 (8-разрядным) равен 1,9608, а при работе с ADC 12 (12-разрядным) равен 0,1221.

Чаще всего будет использоваться шкала, градуированная от -50 °C до +100 °C или +150 °C и включающая весь рабочий диапазон датчика.

Хотя пакет PICOSCOPE в меньшей степени, чем PICOLOG, пригоден для измерения и обработки замеров температур (осциллограф, частотомер и анализатор спектра здесь не помогут), его вольтметр постоянного тока можно настроить непосредственно на отображение измеренной температуры (рис. 6.10).

Рис. 6.10. Вид экрана в режиме измерения температуры

Для отображения температуры в градусах Кельвина достаточно выбрать режим «Переменная шкала», затем установить минимальное значение равным нулю, а максимальное — 500, без знаков после запятой (десятые доли градуса при точности ±1 °C не имеют значения). При отображении результатов в градусах Цельсия минимальное значение равно —273, а максимальное — 227, также без знаков после запятой.

При использовании АЦП, которые изготовлены по приведенным в книге схемам, на примере программы DEGRES.BAS можно убедиться, насколько просто превратить виртуальный вольтметр в виртуальный термометр.

200 REM — DEGRES —

210 GOSUB 100

220 D=INT(100*D)

230 LOCATE 1,1

240 PRINT USING"###";D-273;

245 PRINT "°C "

250 GOTO 210

260 REM (c)1997 Patrick GUEULLE

Метод приведения шкалы, использованный в этом упрощенном варианте программы VOLTS.BAS, можно применять во всех других программах, рассмотренных в главе 5.

ДАТЧИК ДАВЛЕНИЯ

Измерение и регистрация давления широко распространены как в промышленности, так и в повседневной жизни: метеорологические барометры показывают атмосферное давление, а медицинские тонометры — давление в надуваемой манжете. Не стоит забывать и о высотомерах (альтиметрах), которые, по сути, представляют собой те же барометры, но со специальной шкалой.

Нижеописанный простой и дешевый датчик давления, способный работать с АЦП, которые рассмотрены в данной книге, может применяться в самых различных целях.

В зависимости от используемой технологии датчик давления без электронной части может быть и очень дорогим, и относительно дешевым. Экономичные датчики, построенные на основе кристалла кремния, были настолько усовершенствованы, что теперь параметры профессионального уровня можно получить, купив изделие примерно за 25 долларов. Такой датчик состоит из двух основных частей: герметичного корпуса, обычно снабженного штуцерами, позволяющими подсоединять гибкие трубки, и очень необычного полупроводникового кристалла. На одной и той же кремниевой пластине выполнены и классические электронные компоненты, и струнные датчики натяжения (рис. 6.11).

Рис. 6.11. Внешний вид кремниевого датчика давления

Революционная идея состоит в том, что именно сама пластина, определенная часть которой сделана очень тонкой при помощи микрообработки, играет роль мембраны, деформирующейся под воздействием давления.

Первые датчики, изготовленные по такой технологии, давали не слишком хорошие показатели. У них присутствовал ощутимый температурный дрейф, а также заметный сдвиг нуля (наличие выходного напряжения при нулевом давлении), который сильно менялся от образца к образцу. Электронные корректирующие устройства, к счастью, могли существенно сгладить эти недостатки, а на сегодняшний день положение значительно улучшилось.

Выполнение на одной пластине, помимо струнных датчиков натяжения, терморезисторов и резисторов с лазерной подгонкой позволяет производителям создавать и выпускать уже калиброванные и термокомпенсированные датчики. Использовать их очень просто — достаточно подать постоянное напряжение на одну диагональ моста, состоящего из струнных датчиков натяжения, и снимать с другой диагонали этого моста напряжение, пропорциональное приложенному давлению. Так, датчики компании Motorola из серии МРХ 2000 обычно формируют нулевое напряжение в диагонали при нулевом давлении и 40 мВ (реально — в пределах от 37,42 до 42,58 мВ) при давлении, соответствующем их полной шкале.

Для устройств, рассматриваемых в этой книге, с целью охвата наиболее широкой сферы применения был выбран датчик МРХ 2200, работающий в диапазоне изменения давления до 2 бар (до 200 кПа).

Датчик выпускается в двух вариантах — МРХ 2200 АР, называемый абсолютным, и МРХ 2200 DP, называемый дифференциальным. Очень важно понять принципиальную разницу между ними и выбрать именно тот вариант, который соответствует условиям измерения.

Деформируемая мембрана датчика может «чувствовать» только разницу давления между двумя своими поверхностями, притом по-разному в разных направлениях. Вследствие особенностей конструкции у нее есть сторона «высокого давления» и сторона «низкого давления». Поэтому корпус датчика состоит из двух полостей, между которыми и расположена мембрана.

Если каждая из полостей снабжена штуцером для присоединения трубок, датчик определяет разницу между двумя приложенными давлениями, т. е. является дифференциальным. Одно из этих давлений может быть атмосферным — для этого одна из полостей остается открытой (к штуцеру ничего не присоединяется).

В датчиках, называемых абсолютными (или, более правильно, абсолютного давления) одна из полостей полностью герметизирована и «накачана» до определенного давления (хотя внутри нее может быть и глубокий вакуум). Таким образом, давление, прикладываемое к единственному входу датчика, будет измерено относительно этого опорного давления. Датчики такого типа используются, в частности, в барометрах и высотомерах, которые сравнивают внешнее атмосферное давление с опорным. Естественно, такому датчику для нормальной работы не нужна сложная электроника.

Схема устройства согласования, приведенная на рис. 6.12, взята непосредственно из руководства по применению, разработанного компанией Motorola, и является не самой лучшей из существующих, но ее точности в избытке хватает для работы с 8-разрядным АЦП.

Рис. 6.12. Схема устройства согласования для датчика давления

К этой схеме был добавлен интегральный стабилизатор 7805, формирующий напряжение питания 5 В для датчика и для микросхемы сдвоенного операционного усилителя LM 358. Каскады микросхемы решают две задачи: во-первых, воспринимают дифференциальный сигнал с выхода датчика, во-вторых, усиливают его.

При напряжении источника питания 5 В напряжение на выходе второго операционного усилителя не может составлять больше 4 В. Именно эта величина и является напряжением полной шкалы устройства (4 В при давлении 2 бара).

Многооборотный потенциометр R6 с номиналом 20 кОм служит для точной установки этой величины или какой-либо другой точки шкалы, для которой имеется возможность проверить давление с помощью эталонного манометра. Присутствующий в оригинальной схеме, но не обязательный подстроечный резистор для коррекции смещения нуля не был использован ввиду малой величины этого смещения и ограничений точности преобразования 8-разрядных АЦП.

Топологическая схема печатной платы разработанного устройства приведена на рис. 6.13, монтажная схема — на рис. 6.14.

Рис. 6.13. Топологическая схема печатной плоты датчика давления

Рис. 6.14. Монтажная схема датчика давления

Датчик модели МРХ 2200 (но не МРХ 2010, который, согласно руководству компании Motorola, рассчитан на давление до 100 миллибар) крепится к плате двумя винтами-саморезами со средним усилием затяжки и фиксацией винтов лаком или краской.

После закрепления датчика его ленточные выводы припаиваются к предусмотренным для них контактным площадкам. Перед этим выводы датчика должны быть аккуратно отформованы при помощи пинцета или пассатижей с круглыми губками. Внешний вид смонтированной печатной платы показан на рис. 6.15.

Рис 6.15. Внешний вид платы датчика давления

До тех пор, пока на датчик не подано внешнее давление, подключенный к устройству виртуальный вольтметр должен показывать нулевое напряжение, если используется датчик дифференциального типа, или напряжение, соответствующее атмосферному давлению, если использован датчик абсолютного типа.

Широчайшие возможности калибровки и приведения шкал таких программ как PICOSCOPE или PICOLOG позволяют выводить информацию непосредственно в тех величинах, которые интересуют пользователя; в частности, давление выводится в любых соответствующих единицах (например, единицах высоты), равно как и любой другой параметр, который для удобства измерения может быть соотнесен с давлением.

Применяя виртуальный вольтметр программы PICOSCOPE с отсутствующими (что важно) знаками после запятой, достаточно, например, указать нулевую величину для минимального и 2500 гПа (или миллибар) для максимального значений, чтобы при помощи датчика МРХ 2200 АР получить прямую индикацию атмосферного давления в стандартных единицах. Кроме того, достаточно установить максимальную величину равной 1875, чтобы получить индикацию атмосферного давления в миллиметрах ртутного столба (MMHg — мм рт. ст.), единицах внесистемных, но широко распространенных и понятных.

Хотя стандартной единицей давления является паскаль (Па), можно констатировать, что кроме него используется очень много других единиц — от английских фунтов на квадратный дюйм (PSI) до бар или кг/см2, в которых тарированы, например, автомобильные манометры.

Точные соотношения различных единиц давления приведены в табл. 6.1. Эту информацию можно использовать при калибровке той или иной программы с целью индикации результатов измерений в каких-либо единицах из ряда перечисленных.

Таблица 6.1. Соотношение основных единиц измерения давления

В таблице использованы следующие обозначения:

PS1 - фунт/кв. дюйм

дюйм Н20 - дюйм водяного столба

дюйм Hg - дюйм ртутного столба

кПа - килопаскаль

мбар - миллибар

см Н20 - сантиметр водяного столба

мм Hg - миллиметр ртутного столба

ФОТОМЕТРИЧЕСКИЙ ДАТЧИК

Еще проще, чем датчики температуры и давления, изготовляется фотометрический датчик, часто называемый люксметром, но на самом деле выполняющий гораздо более широкие функции.

Измерение параметров светового излучения является очень сложной задачей, особенно если отсутствует четкое представление о том, что и каким образом надо измерять. Даже в самых серьезных лабораториях иногда могут быть получены обескураживающие результаты из-за того, что при измерениях пренебрегли оформлением четкого протокола.

Надо знать, что основной величиной в фотометрии является сила света источника излучения, измеряемая в канделах. Люкс, более известная единица, на самом деле является единицей измерения освещенности, а это принципиально разные величины.

Для получения освещенности в один люкс экран площадью один квадратный метр должен быть расположен на расстоянии одного метра от точечного источника излучения, однородно излучающего свет во всех направлениях (сила света составляет одну канделу).

Строго говоря, экран должен иметь форму сферического сегмента площадью один квадратный метр, а не плоского квадрата со сторонами в один метр. В таком случае каждая точка экрана будет расположена на одинаковом расстоянии (1 м) от источника. Это важно, так как освещенность изменяется обратно пропорционально квадрату расстояния от источника. В указанных условиях область пространства, ограниченная прямыми, которые соединяют источник с линией, образующей периметр экрана, представляет собой «телесный угол» в один стерадиан и заключает световой поток в один люмен. Следовательно, освещенность в один люкс соответствует световому потоку в один люмен, падающему на один квадратный метр площади.

Освещенный подобным образом экран будет отражать, по меньшей мере, часть падающего на него света. Таким образом, он обладает некоторой яркостью, выражаемой в канделах на квадратный метр единицах, называемых нит (нт). Именно эту яркость измеряют экспонометрами в фотографии, тогда как люксметрами измеряют количество света, падающего на поверхность (например, на рабочий стол).

Связь между этими двумя величинами весьма сложна, поскольку основана на отражающих свойствах экрана и зависит от его альбедо (белизны) — величины, характеризующей способность тела отражать падающий на него световой поток, — а также от угла наблюдения экрана. К примеру, в фотографии обычно предполагают, что «средний» объект отражает не более 18 % падающего на него света.

Для того чтобы читатели правильно поняли процесс калибровки нижеописанного прибора, в табл. 6.2 приведены некоторые величины освещенности, получаемые определенной поверхностью в различных природных условиях. Можно убедиться, что динамический диапазон освещенностей достаточно велик.

Таблица 6.2. Некоторые реперные точки фотометрии

В табл. 6.3 приводятся соотношения между основными единицами яркости, применяемыми на практике.

Таблица 6.3. Соотношение между основными единицами яркости

Как с инженерной точки зрения, так и с точки зрения практической электроники все фотометрические измерения производятся с помощью фотоэлектрической ячейки. Однако когда из результатов этих измерений, полученных в вольтах, нужно получить величины силы света, освещенности, светового потока или яркости, надо подходить к этому с точки зрения физика.

Один из самых простых фотометрических датчиков — это фотодиод. Если его включить как фотовольтаическую ячейку, то его ток короткого замыкания будет почти прямо пропорционален освещенности. Значит, он в полном смысле является люксметром. Но все не так просто, поскольку следует учитывать спектральную чувствительность фотодиода.

PIN-фотодиод из монокристаллического кремния — например, широко распространенный элемент BPW 34 — имеет максимальную чувствительность в красной и инфракрасной областях спектра. Это значит, что для применения такого типа ячейки в прецизионной фотометрии надо предусмотреть специальный сине-зеленый фильтр. Фотоэлементы на основе аморфного кремния, напротив, имеют спектральную чувствительность, очень близкую к чувствительности человеческого глаза (как общепринятого образца). В таких случаях говорят, что датчик и человеческий глаз «фототипичны».

Из подобных элементов строятся ячейки солнечных батарей, которые обычно предназначены для использования в системах электропитания малой мощности, но эти фотоэлементы также могут быть отличными фотометрическими датчиками!

Несмотря на ощутимую разницу в размерах, фотодиод BPW 34 и самая маленькая из ячеек SOLEMS имеют сопоставимую чувствительность. Так, при освещенности 1000 люкс BPW 34 формирует ток короткого замыкания около 65 мкА, а ячейка SOLEMS 05/048/016 — около 95 мкА.

Различие заключается в том, что батарея SOLEMS состоит из пяти обычных диодов, включенных последовательно, что позволяет увеличить генерируемое ею напряжение. При коротком замыкании напряжения нет вовсе, тогда как отдаваемый ток определяется элементом батареи с наименьшей площадью (в среднем около 1,2 см2).

Отметим, однако, что фотодиод BPW 34 имеет гораздо большую эффективность преобразования, так как указанные характеристики достигаются при площади чувствительного слоя всего в 7 мм2.

Все это означает, что, применяя нестандартную схему подстройки, в нижеописанном устройстве можно использовать и фотодиод BPW 34 (производства компании Siemens или Centronic), и солнечную батарею SOLEMS. Последний вариант более предпочтителен при измерениях освещенности, результат которых, выраженный в люксах, должен быть точным, a BPW 34 — в случаях, когда нужен датчик очень маленьких размеров (в частности, при измерениях оптической плотности).

При условии работы с монохроматическим излучением (красный светодиод, полупроводниковый или иной лазер) люксметр позволяет определять светопередачу любого полупрозрачного объекта (фильтр, пластмассовая пленка, определенная область на фотонегативе и т. п.). Достаточно отрегулировать измерительную цепь так, чтобы обеспечить индикацию светопередачи, равную 1,00 при прямой видимости, и тогда после размещения объекта между источником света и фотодиодом с индикатора можно считывать непосредственно показания уровня светопередачи.

Используя полученный результат, легко рассчитать оптическую плотность светового потока: она с точностью до знака равна десятичному логарифму величины светопередачи.

Принципиальная схема люксметра, приведенная на рис. 6.16, повторяет классическое схемное решение, описанное в различных руководствах по применению операционных усилителей.

Рис 6.16. Принципиальная схема люксметра

Разность напряжений на входах дифференциального усилителя всегда близка к нулю, следовательно, фотодиод работает в режиме короткого замыкания. При этом входной ток усилителя также имеет очень малую величину, что определяется высоким входным сопротивлением, а ток через резистор обратной связи равен по величине току фотодиода, но противоположен по направлению.

Выходное напряжение каскада U в таком случае будет определяться как U = R·I, где R — сопротивление резистора в цепи обратной связи, а I — фототок, формируемый фотодиодом.

С учетом коэффициента усиления второго каскада, регулируемого в пределах от 1 до 11, четыре переключаемых резистора в цепи обратной связи первого каскада позволят успешно перекрыть пределы 50, 500,5000 и 50 000 люкс при выходном напряжении 5 В. Естественно, эти величины могут быть переопределены пользователем — путем изменения либо номиналов резисторов, либо коэффициента усиления второго каскада.

Заметим также, что при уровне освещенности выше 10000 люкс линейность характеристики фотодиода BPW 34 производителем не гарантируется, а параметры ячейки SOLEMS не специфицируются при освещенности выше 100000 люкс. Вероятно, это уровни, близкие к уровням насыщения. Поэтому при уровнях освещенности выше 50000 люкс рекомендуется применять серый фильтр известной плотности и соответствующим образом программно корректировать результат измерений.

Рассматриваемое устройство питается от простой гальванической батареи 9 В, так как микросхема LM 358 специально рассчитана на работу от однополярного источника.

На рис. 6.17 показана топологическая схема печатной платы фотометрического датчика. По размерам плата сравнима с указанной гальванической батареей. Монтажная схема устройства изображена на рис. 6.18, а его внешний вид с установленными элементами — на рис. 6.19.

Рис 6.17. Топологическая схема печатной платы фотометрического датчика

Рис 6.18. Монтажная схема фотометрического датчика

Рис. 6.19. Внешний вид фотометрического датчика

На плате предусмотрено место для установки фотодиода BPW 34.

При установке необходимо соблюдать указанную полярность, которая на первый взгляд может показаться неправильной, но это ошибочное мнение! При таких размерах платы и предложенном способе монтажа батарея SOLEMS на плате разместиться не может. Если решено использовать в качестве фоточувствительного элемента эту батарею, то подключать ее надо при помощи двух проводов длиной около 10 см, приклеенных специальным проводящим клеем к двум металлизированным контактам на задней стороне ячейки.

Несмотря на рекомендации производителя компонентов, категорически не советуем использовать пайку оловом!

Для подключения датчика к АЦП и к выводам гальванической батареи предусмотрена соединительная колодка, но провода можно и припаять. Блок перемычек, удобный при нечастой смене пределов, при необходимости можно заменить на галетный переключатель.

Перед выполнением серьезных измерений устройство должно быть откалибровано методом сравнения с показаниями люксметра высокого класса точности. Но есть множество интересных задач, которые не требуют строгой калибровки, однако предполагают наличие у датчика высокой линейности преобразования, которой как раз обладает рассмотренное устройство. Сюда относятся, например, измерения оптической плотности или контраста, а также регистрация изменений освещенности за определенные промежутки времени.

ДАТЧИК ТОКА

Среди различных приставок, которыми желательно оснастить виртуальный измерительный комплекс, устройство для измерения тока будет одним из самых полезных. Гораздо более удобное и гибкое в использовании, чем обычный резистивный шунт, предлагаемое устройство в наименьшей степени повлияет на работу схемы, в которую будет включено; при этом оно прекрасно подходит для работы с измерительными приборами, имеющими самые разные входные параметры и пределы.

Известно, что самые простые АЦП могут осуществлять преобразование только положительных входных напряжений в диапазоне от 0 до 5 В. Чтобы осуществить при помощи таких устройств измерение силы тока с полной шкалой, предположим, 5 А, надо подключить параллельно их входу резистор с номиналом 1 Ом. Эта величина намного больше сопротивления 0,064 Ом, которое вносится в проверяемую схему хорошим стрелочным прибором на том же пределе «5 А». Подключение подобного устройства может серьезно повлиять на проверяемую схему, не говоря уже о том, что при силе тока 5 А рассеиваемая на резисторе мощность достигнет 25 Ватт!

Лучшие результаты могут получиться, если использовать резистор с сопротивлением 0,1 Ом. Но при силе тока 5 А падение напряжения на нем составило бы 500 мВ, чего недостаточно для работы АЦП (особенно 8-разрядного) со шкалой 5 В, если требуется высокая точность измерений.

Оптимальное решение состоит в использовании резистивного шунта минимальной величины и в последующем усилении напученного на нем напряжения до величины, необходимой для нормальной работы АЦП.

Микросхема МАХ471 компании MAXIM, созданная для контроля изменений силы тока в автономных источниках питания мобильного оборудования, содержит в одном корпусе резистор с сопротивлением около 0,035 Ом и несколько операционных усилителей с малой потребляемой мощностью, включенных по оригинальной схеме. Эта микросхема имеет рабочий диапазон напряжений питания от 3 В до 36 В (при потребляемом токе, меньшем 100 мкА) и формирует на выходе измерительный ток, составляющий 1/2000 от тока, протекающего через внутренний шунт. На сопротивлении 2 кОм измерительный ток создает напряжение 1 В при силе тока в измеряемой цепи 1 А. Эти параметры как нельзя лучше подходят для измерения любым виртуальным прибором.

Конечно, данный коэффициент преобразования можно изменить, использовав другой резистор соответствующего номинала.

Микросхема МАХ471 имеет верхний предел измеряемой силы тока 3 А (10 А пикового значения в течение не более 10 мсек). Кроме того, можно отрегулировать схему для получения на выходе напряжения 5 В при силе тока 3 А. При этом в программу необходимо добавить корректирующий множитель.

В любом случае рекомендуется точно откалибровать устройство, так как точность внутреннего измерительного резистора заметно ниже, чем у хорошего шунта. Но благодаря очень высокой температурной стабильности полная погрешность коэффициента преобразования составляет менее 2 %, что соответствует возможностям 8-разрядного АЦП.

Принципиальная схема датчика тока, приведенная на рис. 6.20, содержит подстроечный резистор 10 кОм, позволяющий регулировать ее коэффициент передачи в широких пределах относительно величины 1 В/А.

Рис. 6.20. Принципиальная схема датчика тока

Заметим, что направление измеряемого электрического тока (его знак) может быть произвольным. Микросхема МАХ471 в некотором смысле «выпрямляет» напряжение, падающее на шунте, с тем чтобы выходное напряжение всегда оставалось положительным. Это очень важно при работе с любым виртуальным измерительным прибором, нечувствительным к отрицательному напряжению.

Светодиод D1 служит для индикации знака измеряемого тока, что может оказаться полезно в некоторых практических случаях (например, в режиме заряда или разряда аккумулятора).

Вообще говоря, устройство должно питаться от гальванической батареи 9 В (рис. 6.21), но в ряде ситуаций (например, при длительных измерениях) напряжение питания можно получать непосредственно от источника, формирующего измеряемый ток. Для этого достаточно использовать схему, приведенную на рис. 6.22, по крайней мере, при напряжениях от 3 В до 36 В.

Рис. 6.21. Схема питания устройства от гальванической батареи

6.22. Схема питания устройства от измеряемой цепи

Как и все устройства, описанные в этой главе, датчик тока собран на печатной плате, близкой по размерам к гальванической батарее 9 В, от которой осуществляется его питание. После изготовления платы в соответствии с рис. 6.23 на нее надо установить элементы в соответствии с монтажной схемой (рис. 6.24).

Рис. 6.23. Топологическая схема печатной платы датчика тока

Рис. 6.24. Монтажная схема датчика тока

Внешний вид устройства показан на рис. 6.25.

Рис. 6.25. Внешний вид датчика тока

Две соединительные колодки, установленные на плате, позволяют подключить измерительную цепь и источник питания с одной стороны, а с другой стороны снять выходное напряжение. К последним клеммам двумя проводами с соблюдением полярности подключается аналого-цифровой преобразователь.

Калибровка устройства осуществляется подстроечным резистором R2 с использованием, например, источника стабильного образцового тока величиной 3 А. Можно установить и другие диапазоны измеряемой силы тока при диапазоне выходного напряжения от 0 до 5 В. Для этого необходимо изменить коэффициент преобразования, т. е. сделать его отличным от единицы (1 В/А). Новое установленное значение следует запомнить и ввести в качестве параметра в программную часть виртуального измерительного прибора.

Приложения

Ниже приводятся сведения о файлах, которые являются дополнением к этой книге. Найти их вы можете по адресу http://www.dmk.ru.

Даны также координаты фирм-поставщиков и торговых предприятий, к которым читатели могут обратиться по интересующим вопросам.

ФАЙЛЫ, НАХОДЯЩИЕСЯ НА СЕРВЕРЕ

К программному обеспечению, дополняющему книгу, относятся следующие файлы и директории:

Файлы, находящиеся в корневой директории, позволяют установить демонстрационные версии программ, обычно поставляемых с АЦП ADC 10 и ADC 12 компании PICO Technology.

Для установки версии DOS надо запустить программу INSTALL.EXE, а для версии WINDOWS — программу WINSTALLEXE из меню «Выполнить…». Процедура установки позволяет выбрать язык, на котором должны работать программы.

Демонстрационные версии позволяют смоделировать большинство предлагаемых режимов, но только для сигналов, имитируемых самими программами. Аналого-цифровой преобразователь, подключенный к ПК, будет в этом случае проигнорирован.

Директория BASIC включает все программы и драйверы, листинга которых приведены в книге, за исключением тех, которые написаны на языке TurboPASCAL. Последние находятся в директории PASCAL (исходные тексты) и EXE (исполняемые модули).

Наконец, в директории РСВ содержатся топологические схемы всех печатных плат, рассмотренных в этой книге, в виде файлов с расширением РСВ, сгенерированных пакетом BOARDMAKER.

ПОЛЕЗНЫЕ АДРЕСА

Здесь приведены координаты фирм-поставщиков и торговых предприятий, упоминаемых в книге, к которым читатели могут обратиться для приобретения комплектующих, программ, компонентов, а также получить всю необходимую дополнительную информацию по интересующим вопросам.

• Autex (095) 3347741, (095) 3348729, [email protected]

• Чип и Дин (095) 2819917, (095) 2813368, [email protected]

Примечание. Можно применять любые подходящие по размерам резисторы. Особое внимание следует обратить на входные блоки и каскады описанных устройств. В них необходимо использовать только металлопленочные резисторы, например, типов МЛТ, ОМЛТ, а также из группы С2 (например, С2-21 или С2-23). В остальных случаях допустимо применять любые подходящие конденсаторы.

* * *

1 В иностранной литературе часто встречается обозначение точности в единицах ppm (частей на миллион), что соответствует множителю 10-6.