Жанры
Регистрация
Читать онлайн Интеллектуальная энергетика бесплатно

Интеллектуальная энергетика



МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. И. И. ПОЛЗУНОВА»

ООО «МЕЖРЕГИОНАЛЬНЫЙ ЦЕНТР ЭЛЕКТРОННЫХ ОБРАЗОВАТЕЛЬНЫХ РЕСУРСОВ»

Рис.0 Интеллектуальная энергетика

Материалы изданы в авторской редакции.

Редакционная коллегия (составители):

С. О. Хомутов, доктор технических наук, профессор, заведующий кафедрой «Электроснабжение промышленных предприятий» АлтГТУ;

В. И. Сташко, кандидат технических наук, доцент кафедры «Электроснабжение промышленных предприятий» АлтГТУ.

Рис.1 Интеллектуальная энергетика

© С. О. Хомутов, В. И. Сташко, 2021

© ООО «МЦ ЭОР», 2021

От плана электрификации России к энергетическому переходу и трансформациипарадигмы энергоснабжения

Сташко Василий Иванович, [email protected]

Аннотация:

В статье представлена информация, связанная с сущностью, разработкой, и реализацией плана ГОЭЛРО. Также, исследованы вопросы, касающиеся состояния отечественной энергетики в начале XX века, и указаны причины, помешавшие реализовать план электрификации России до 1917 г. Рассмотрены основные этапы становления отечественной энергетики, и причины вызвавшие необходимость проведения реформирования РАО «ЕЭС России». Основной целью исследований является анализ процессов, которые проходили в электроэнергетике России за прошедшее столетие, и определение дальнейших перспектив в связи с началом нового, четвертого энергетического перехода. Актуальность исследований обусловлена тем, что в России принят плана по развитию водородной энергетики, который, по сути, является катализатором динамичного перехода отечественной энергетики от ископаемого топлива к «зелёному» водороду.

Ключевые слова: ГОЭЛРО, энергетика, электроэнергетика, электростанция, мощность, энергия, ВИЭ, энергетический переход, водород.

План ГОЭЛРО (Государственная комиссия по электрификации России) – это план электрификации России, который стал основой не только для индустриализации, но и в целом, для более динамичного развития нашей страны во всех сферах социально-экономической деятельности. План ГОЭЛРО был успешно реализован в достаточно короткие сроки, а его значение невозможно переоценить. Так, именно развитие электроэнергетики в 20-30-е годы прошлого столетия, позволило ускорить процесс социально-экономических преобразований в СССР, и быстро перейти к индустриальному этапу развития экономики с более развитыми новыми технологиями в промышленном производстве. В результате, Победа в Великой Отечественной войне была обеспечена, в том числе, и огромному вкладу промышленности, которая фактически с нуля была создана благодаря планам индустриализации и ГОЭЛРО.

Государственный план электрификации России (рисунок 1) был принят 22 декабря 1920 года, и именно в этот день отмечается профессиональный праздник работников энергетической промышленности – День энергетика.

Согласно данных некоторых источников, в основу плана ГОЭЛРО положены наработки энергетической академической Комиссии, которая была создана в 1916 г., для изучения естественных производительных сил в Российской империи (КЕПС). Примечателен тот факт, что в 1930 г. КЕПС была преобразована в Энергетический институт АН СССР.

По другим данным, разработка плана масштабной электрификации России была начата до революции немецкими инженерами, которые были специально для этого наняты Петербургской электрической компанией. Но, так как в 1914 г. началась Первая мировая война, то все работы по разработке этого грандиозного плана были прекращены.

Рис.2 Интеллектуальная энергетика

Рисунок 1

Государственный план электрификации России (ГОЭЛРО)

В России начала XX века власти понимали важность развития экономики, основой которой должна была стать электроэнергетика. Россия уступала многим странам по выработке электроэнергии. Для сравнения в 1913 г. в США было выработано 26,3 млрд. квтч в год, что почти в 10 раз больше, чем в России.

Кроме того, нельзя было не учитывать тот факт, что в стране уже давно существовала развитая электротехническая научная школа, проводились Всероссийские электротехнические съезды, разрабатывались проекты электрификации, планы по оптимальному распределению электроэнергии по всей территории страны и т. д. К сожалению, осуществление планов и проектов электрификации России тормозилось существованием множества неразрешимых проблем. Главными из них были следующие проблемы:

– частная собственность на землю;

– отсутствие или несовершенство нормативной и правовой базы;

– отсутствие единой системы управления;

– более 50 % энергообъектов принадлежало иностранному капиталу.

Все эти проблемы исчезли сами собой в октябре 1917 г., и уже через три года, в труднейшие для страны времена (шла гражданская война и продолжалась интервенция), в кротчайшие сроки руководством РСФСР был разработан план электрификации, и для его реализации была создана комиссия под руководством Г. М. Кржижановского (рисунок 2). Здесь особо следует отметить тот факт, что учёный в области энергетики, академик АН СССР, советский государственный деятель Г. М. Кржижановский является основателем научных подходов в развитии отечественных энергетических систем и электрификации всех отраслей экономики. В результате, под руководством Кржижановского, в конце 50-х годов прошлого столетия, был разработан план комплексный научно-исследовательских работ, целью которых являлось создание в СССР единой энергетической системы.

Примечателен также и тот факт, что Г. М. Кржижановский уделял огромное внимание вопросам не только вовлечения в топливный баланс вторичных энергоресурсов и использования комбинированного топлива, но и использования возобновляемых источников энергии (ВИЭ), причем, речь не только гидроэнергетике. Так, после создания Энергетического института (ЭИН) в 1930 г., по инициативе Г. М. Кржижановского, была создана исследовательская группа по использованию солнечной и ветровой энергии. Позже, в ЭИН была создана отдельная научно-исследовательская лаборатория, которая занималась разработками в области использования ВИЭ.

Рис.3 Интеллектуальная энергетика

Рисунок 2

Комиссия по разработке плана ГОЭЛРО. Слева направо:

К. А. Круг, Г. М. Кржижановский, Б. И. Угримов, Р. А. Ферман, Н. И. Вашков, М. А. Смирнов

План ГОЭЛРО был рассчитан максимум на 15 лет, но, уже через 10 лет после начала его реализации, был фактически перевыполнен. Реализация плана ГОЭЛРО представлена в таблице 1.

Таблица 1

Реализация плана ГОЭЛРО (показатели 1913–1927 гг.)

Рис.4 Интеллектуальная энергетика

Наиболее тяжелейшим испытанием для всех жителей нашей страны стала Великая Отечественная война, в ходе которой значение энергетики достаточно сложно переоценить, так как именно она была основой экономического, а следовательно и военного могущества СССР. И именно поэтому, гитлеровская Германия ставила перед собой одну из наиболее важных задач, уничтожение и захватит главных энергетических ресурсов. Поэтому уже в первые месяцы войны, вражеской авиацией в нашей стране было уничтожено более половины хранилищ топлива, в результате чего танки и авиация остались без горючего. Также, начиная с первых дней войны, был нанесен колоссальный ущерб электросетевому комплексу, были нанесены удары и разрушены объекты энергетической инфраструктуры и топливно-энергетического комплекса.

Но, несмотря на то, что почти половину генерирующих мощностей были потеряны, в руководстве сраны понимали, что для скорейшей Победы без энергетики, как в тылу, так и на фронте, не обойтись (рисунок 3).

Рис.5 Интеллектуальная энергетика

Рисунок 3

Энергетический плакат времен Великой Отечественной войны

Советские энергетики самоотверженно трудились в тылу, героически сражались на фронте, на передовой, и внесли свой исключительный вклад в Победу.

Восстановление объектов энергетики в СССР начиналось сразу же, после освобождения городов и территорий от немецко-фашистской оккупации.

Основным периодом послевоенного восстановления отечественной энергетики считается период с 1945 по 1959 годы. Некоторые важные этапы этого периода приведены в таблице 2.

Таблица 2

Важные этапы восстановления энергетики 1945–1959 гг.

Рис.6 Интеллектуальная энергетика

Мощность вновь вводимых в 50-х годах генерирующих мощностей постоянно возрастала. Началось строительство крупнейших Красноярской, Братской и Волжской ГЭС, а также первой дальней линии электропередачи (ЛЭП) 400 кВ. Параллельно с этим развивались работающие раздельно три объединенные электроэнергетические системы Центра, Юга и Урала.

27 июня 1954 г. считается днем, когда энергетика мира вступила в новую эпоху. За день до этого, на первой в мире атомной электростанции – Обнинской АЭС, был запущен турбогенератор, и началась выработка электроэнергии. Первая в мире АЭС мощностью 5 МВт встала под промышленную нагрузку.

В 1964 г. ведены в эксплуатацию энергоблоки Нововоронежской (и 360 МВт) и Белоярской АЭС (200 МВт). Началось дальнейшее, бурное развитие отечественной атомной энергетики, которая и на сегодняшний день по уровню научно-технических разработок является одной из лучших в мире. Так, например, совсем недавно стало известно, что на предприятиях Росатома и Роскосмоса, начато строительство первого в мире космического атомного буксира «Нуклон» (рисунок 4) [1].

Рис.7 Интеллектуальная энергетика

Рисунок 4

Космический буксир «Нуклон» с ядерным двигателем

В первой половине 60-х годов, все существующие на тот момент времени дальние ЛЭП, были переведены на напряжение 500 кВ, ставшие в последующие годы основными системообразующими сетями единой энергосистемы (ЕЭС) европейской части СССР. Системообразующей сети в объединенной энергосистеме (ОЭС) восточной части страны, также были переведены с 220 кВ на 500 кВ. ОЭС Северного Кавказа и Юга были соединены на параллельную работу по ЛЭП 110–220 кВ, вступила в строй первая опытно-промышленная линии ЛЭП постоянного тока напряжением 800 кВ, соединившая Донбасс и Волгоград.

Следующий этап развития энергетики нашей страны начался в 70-х годах, и связан он был с формированием ЕЭС СССР. Так, в состав ЕЭС, в 1972 г. вошли ОЭС Средней Азии и ОЭС Казахстана, а в 1978 г. завершено строительство транзитной ЛЭП напряжением 500 кВ, соединившей Урал, Казахстан, и Сибирь. В это же время, с ЕЭС СССР начали параллельную работу энергосистемы европейских стран членов СЭВ (Совет экономической взаимопомощи) и энергосистема Монголии.

Экспорт электроэнергии в Турцию от ЕЭС СССР был осуществлен в 70-х годах, а объединение с энергосистемами Скандинавских стран (Финляндия, Норвегия и др.) реализовано посредством вставки постоянного тока (ВПТ) в г. Выборге, эксплуатация которой началась в 1981 году.

Развитие системообразующих сетей в 70-80-е годы происходило поэтапно, путем последовательного перехода на более высокие ступени напряжений. Впервые, вводом в эксплуатацию ЛЭП Конаковская ГРЭС – Москва, было освоено напряжения 750 кВ. Возрастало напряжение, росла протяженность ЛЭП, в результате появлялась возможность объединения крупнейших энергосистем в единую энергосистему.

В начале 1990 г., девять из одиннадцати ОЭС, вошли в состав ЕЭС СССР, охватив почти 2/3 всей территории страны. Но, после распада СССР в 1991 г., некоторые части ЕЭС оказались на территории других государств, в результате чего некоторые связи с энергосистемами были нарушены.

Рассматривать структуру современной электроэнергетики России, необходимо исключительно в контексте преобразований в отрасли, которые произошли в результате реорганизации РАО «ЕЭС России». Данную реорганизацию называют реформой российской энергетики, она была начата в начале 2000-х годов, и завершилась в 2008 году.

С момента завершения этапа реформы электроэнергетики прошло относительно не много времени, поэтому для понимания происходящих в отрасли процессов, важно разобраться в тех причинах, которые и вызвали необходимость проведения реформирования РАО «ЕЭС России».

Основная проблема в процессе реформирования отечественной электроэнергетики заключалась в том, что в развитых странах с рыночной экономикой, демонополизация энергетики была начата почти на 20–25 лет раньше, чем в России. У нас же, реформирование электроэнергетики было начато и проходило в достаточно жестких условиях политического и экономического кризиса. На протяжении десятилетия, начиная с 1991 года, рыночные отношения в экономике страны еще не сложились, а вся система государственного регулирования, в том числе и в энергетике, была полностью демонтирована. Износ основных фондов в электроэнергетике, в отдельных регионах достигал 75 % и более, а объем инвестиций, как частных, так и государственных в отрасль, был минимальным. Соответственно, реформирование сопровождалось технологическим отставанием, и происходило на фоне постоянного падения экономических показателей.

До сих пор, между сторонниками и противниками реформирования российской электроэнергетики продолжается спор, суть которого сводится к тому, что для предотвращения деструктивных процессов в электроэнергетике, существовали и другие способы. И действительно, теоретически, существовали как минимум еще два способа избежать уже состоявшегося реформирования РАО «ЕЭС России».

Суть первого из этих способов заключалась в том, что все накопленные в Стабилизационном фонде средства, около 3,5 млрд руб., должны были быть направлены на поддержку отрасли, главным образом, на обновление основных фондов, обновление инфраструктуры, строительство и т. д. Но, при таком варианте развития событий, дефолт для макроэкономики был бы неизбежен. Суть второго способа сводилась к резкому повышению тарифов (в 3–5 раз) в достаточно короткий промежуток времени. Реализация такого варианта привела бы к лавинообразному росту цен, и к дестабилизации социально-политической обстановки в стране [2, 3].

Таким образом, с целью вывода отечественной электроэнергетики из кризиса, привлечения частных и зарубежных инвестиций, снижения темпов роста цен на электроэнергию и т. д., в новые столетия реформирование отрасли продолжилось. При этом основным ориентиром было названо создание современного высокоэффективного рынка электроэнергии на основе конкурентных отношений [4].

В результате изменилась структура отрасли, функции естественно-монопольных (передача электроэнергии и оперативно-диспетчерское управление) и потенциально конкурентных (производство и сбыт электроэнергии) были разделены. Вместо прежних вертикально-интегрированных компаний, выполнявших все эти функции, были созданы компании, которые специализировались на отдельных видах деятельности. В общем виде, с точки зрения функционирования, структура современной российской электроэнергетики представлена на рисунке 5.

Также, одним из главных результатов реформирования электроэнергетической отрасли явилось то, что образовался двухуровневый конкурентный рынок электроэнергии.

Рис.8 Интеллектуальная энергетика

Рисунок 5

Функциональная схема электроэнергетики России

В 2019 г. вышел подготовленный Институтом энергетических исследований РАН совместно с Московской школой управления «Сколково» очередной «Прогноз развития энергетики мира и России», который подтвердил тот факт, что мировая энергетическая система находится в состоянии очередного периода изменений. При этом, изменения носят фундаментальный характер [5].

Если посмотреть на основные прогнозные показатели (рисунок 6), которые характеризуют будущее мировой энергетики, то нельзя не заметить достаточно существенный разброс экспертных оценок. А это, мягко говоря, создает огромную неопределённость, и при определённых обстоятельствах (политическая, экономическая нестабильность, и др.) может вызвать реальную угрозу энергобезопасности государства.

Таким образом, «Прогноз развития энергетики мира и России 2019» констатирует тот факт, что мир вступает в новый этап 4-го энергетического перехода (далее – Энергопереход), к широкому использованию ВИЭ.

Рис.9 Интеллектуальная энергетика

Рисунок 6

Первичное энергопотребление в мире в 2040 г. млн т н. э.

Текущий, четвертый Энергопереход – это очередное фундаментальное преобразование мирового энергетического сектора. Динамика мирового энергопотребления по видам топлива с 1860 по 2040 годы, представлена на рисунке 7.

Рис.10 Интеллектуальная энергетика

Рисунок 7

Энергетические переходы и энергопотребление

Каждый последующий энергетический переход – это результат коренных изменений в технологиях, которые позволяют существенно изменить структуру первичного энергопотребления.

Вообще «энергетический переход» – это перевод немецкого термина «Energiewende». И впервые этот термин был использован в 1980 г. в публикации Института прикладной экологии Германии. Называлась публикация так: «Энергетический поворот. Рост и благосостояние без нефти и урана». В данной работе доказывалась возможность экономического роста и устойчивого энергоснабжения без использования атомной энергии – за счёт возобновляемой энергетики.

С количественной точки зрения Энергопереход можно определить, как 10 % сокращение доли рынка определенного энергоресурса за 10 лет.

Первый энергетический переход происходил от биомассы к углю, в ходе него доля угля в общем объеме потребления первичной энергии с 1840 по 1900 гг. увеличилась с 5 % до 50 %. Уголь стал основным источником энергии индустриального мира;

Второй энергетический переход связан с распространением нефти – ее доля выросла с 3 % в 1915 г. до 45 % к 1975 г. Наиболее интенсивный период переключения с угля на нефть пришелся на годы после Второй мировой войны. Начался «век моторов» и доминирования нефти, который завершился в конце 1970-х гг. нефтяным кризисом;

Третий энергетический переход привел к широкому использованию природного газа (его доля выросла с 3 % в 1930 г. до 23 % в 2017 г.) за счет частичного вытеснения как угля, так и нефти [5].

4-й энергетический переход обуславливается не одной конкретной технологической революцией, а целой массой технологических прорывов.

Бурный рост технологических инноваций в энергетике и изменение государственных приоритетов в области энергетической политики в сторону более широкого применения ВИЭ позволяет отказаться от дорогостоящих и невозобновляемых энергоресурсов и открывает путь к диверсификации энергоснабжения. В первую очередь, речь сегодня идет об энергосистемах и системах электроснабжения, получающих электроэнергию от ВИЭ. Но, и здесь, судя по тенденции развития электроэнергетики в мире, традиционная схема «генерация – транспортировка – потребитель» претерпевает существенные изменения.

Декарбонизация является первопричиной трансформации. Декарбонизация – переход к экологически чистой «безуглеродной» экономике и энергетике, не сопровождающейся выбросами парниковых газов (в частности, диоксида углерода)

– увеличение доли ВИЭ в энергетическом балансе стран и их объединений;

– максимальный отказ от применения любых технологий, в которых формируются выбросы парниковых газов (угольной генерации, газового отопления, двигателей внутреннего сгорания);

– увеличение доли электрического транспорта, в первую очередь, частных электромобилей.

С каждым годом, всё больше и больше потребителей электроэнергии отказываются от централизованного энергоснабжения, и, по всему миру, уже около 13 % крупных производств, перешли на собственные источники генерации. Так, например, в Дании, уже более 50 % различных производств, получают электроэнергию от своих собственных источников [6].

Таким образом, можно констатировать тот факт, что системы распределенной энергетики и микрогенерации (производство электроэнергии объектами малой мощности) получают наибольшее развитие, полностью независимы от централизованных систем электроснабжения и предназначены для выработки электроэнергии непосредственно рядом с потребителем. Распределенная энергетика становится важнейшим элементом глобальной трансформации мировой энергосистемы, и динамика этих процессов усиливается с каждым годом.

Одновременно с этим, всё заметнее становятся изменения энергополитики ведущих стран мира, подталкивая энергетику в переходу от углеводородов к «зелёному» водороду. Стремление декарбонизации экономики, неизбежно выводит водород на первый план, который уже давно и по праву считается топливом будущего. Поэтому, транзит к энергии ВИЭ от энергии ископаемого топлива, накопление (аккумулирование и хранение) этой энергии – это те задачи XXI века, решить которые возможно только используя уникальные свойства водорода.

В 2020 г. в России был принят план развития водородной энергетики до 2024 г., и, тем самым, наша страна вступила глобальную «водородную гонку» [7]. Согласно принятому плану, который по праву можно назвать планом «ГОЭЛРО XXI века», предполагает не просто реализовать несколько крупномасштабных проектов, но и по сути, осуществить водородную революцию, начав широкомасштабный процесс генерации водорода для новой энергетики нашей страны.

Список используемой литературы

1. Нуклон (космический комплекс) [Электронный ресурс]: Википедия. Свободная энциклопедия. – Режим доступа: https://ru.wikipedia.org/wiki/Нуклон_(космический_комплекс) (дата обращения: 21.12.2020).

2. Бадовская Н. Реформа электроэнергетики в России //Мировое и национальное хозяйство. – 2009. – №. 2. – С. 13–22.

3. Реформа электроэнергетики в новой России // Студми. Учебные материалы для студентов. Режим доступа: https://studme.org/138450/tehnika/reforma_elektro-energetiki_novoy_rossii (дата обращения: 21.12.2020).

4. Уильямсон О. И. Экономические институты капитализма: Фирмы, рынки, «отношенческая» контрактация / Научн. ред. и вступительная статья В. С. Катькало; пер. с англ. Ю. Е. Благова, В. С. Катькало, Д. С. Славнова, Ю. В. Федотова, Н. Н. Цытович. СПб.: Лениздат; CEV Press, 1996, 702 с.

5. Прогноз развития энергетики мира и России 2019 / под ред. А. А. Макарова, Т. А. Митровой, В. А. Кулагина; ИНЭИ РАН – Московская школа управления СКОЛКОВО – Москва, 2019. – 210 с. – ISBN978-5-91438-028-8.

6. Электроэнергетика Дании – Electricity sector in Denmark Электроэнергетика [Электронный ресурс]: Из Википедии, бесплатной энциклопедии. – Режим доступа: https://ru.qaz.wiki/wiki/Electricity_sector_in_Denmark (дата обращения: 21.12.2020).

7. План мероприятий («дорожная карта») по развитию водородной энергетики в Российской Федерации до 2024 года [Электронный ресурс]: Официальный сайт Министерства энергетики Российской Федерации. – Режим доступа: https://minenergo.gov.ru/node/19194 (дата обращения: 21.12.2020).

Информация об авторах

Сташко В. И., кандидат технических наук, доцент кафедры «Электроснабжение промышленных предприятий» Алтайского государственного технического университета им. И. И. Ползунова, г. Барнаул.

Актуальность внедрение АСКУЭ в России: борьба с потерями электроэнергии и внедрение дифференцированных по зонам суток тарифов

Рассохина Екатерина Олеговна, [email protected]

Хомутов Станислав Олегович, [email protected]

Аннотация:

Современную энергосистему невозможно представить без потерь различного характера. В этом контексте довольно остро стоит проблема потерь электроэнергии, поскольку из-за них энергокомпании терпят существенные убытки. Одним из путей выхода из данной ситуации является внедрение АСКУЭ, которая способствует уменьшению коммерческих потерь. Этот тип потерь нередко обусловлены воровством потребителей, поэтому современные технологии стимулируют их вести законопослушный образ жизни. Помимо этого АСКУЭ позволяет внедрить дифференцированную по зонам суток тарификацию, что может быть выгодно как потребителю, так и энергокомпании. В данной статье рассматривается упрощённый вариант подобной тарификации на заданном примере. Также немаловажным является вопрос энергоэффективности, который обсуждается и решается на законодательном уровне посредством принятия соответствующих законов и нормативно-правовых актов. В этом вопросе также может помочь АСКУЭ.

Ключевые слова: Энергоэффективность, коммерческие потери, тарифы на электроэнергию, АСКУЭ, энергосбережение, тарификация, дифференцированные по зонам суток тарифы, тарифы на электроэнергию.

Современные технологии не стоят на месте. С каждый днём в нашу жизнь входит всё больше оборудования и технологий, которые не только позволяют облегчить жизнь человеку, но и способствуют эффективному и экономичному расходованию различных ресурсов. Одним из таких ресурсов является электрическая энергия.

При рассмотрении данного понятия стоит помнить, что рядом с ним, бок о бок, всегда идут потери. Это обусловлено тем, что по ряду причин потребитель получает не весь объём поставляемого товара (в современной энергетике электроэнергию рассматривают как товар).

Энергетики укрупнённо делят потери на две довольно обширных категории: технологические и коммерческие. В этой статье рассматривается второй вид, поскольку в формате АСКУЭ ― автоматизированной системы коммерческого учёта электроэнергии его можно считать наиболее актуальным.

Под этой аббревиатурой стоит понимать такую современную систему учёта, которая позволяет собирать, обрабатывать и передавать данные непосредственно в энергокомпании различного уровня. Это позволяет выявлять не только недобросовестных потребителей путём простейших математических расчётов, но и вовремя отслеживать, например, сломанные счётчики, поскольку с них может переставать поступать информация.

При этом стоит отметить, что помимо этого внедрение АСКУЭ актуально и с точки зрения законодательства. С 2010 года Российская Федерация активно занимается вопросами энергоэффективности. Так, например, был принят закон № 261-ФЗ «Об энергосбережении…» (на государственном уровне согласовывался годом ранее – в 2009 году), который задаёт вектор дальнейшего развития для отечественной энергетики.

Также при работе с АСКУЭ можно говорить о дифференцированной по зонам суток тарификации. Такой вид тарификации выгоден как потребителю, так и энергетической отрасли, поскольку первый экономит финансы, а вторая – улучшает свои показатели в различных областях (например, выравнивает график нагрузки энергосистемы).

Однако стоит отметить, что для реализации данной идеи необходимо отслеживание показателей в определённые промежутки времени, поэтому следует понимать, что, например, индукционный счётчик в этом случае не подойдёт из-за своих ограниченных технических возможностей.

Далее вопрос внедрения дифференцированного тарифа будет рассмотрен с точки зрения выгоды для потребителя. Примером послужила жилая 2-ух комнатная квартира в Алтайском крае. При этом данная жилплощадь имеет электрическую плиту и располагается на территории одного из городов края. Среднее потребление электроэнергии в месяц составляет 274 кВт∙ч. Тарификация выбрана на основе данных АО «Барнаульская горэлектросеть».

Расчёт произведён для дифференцированного по двум зонам суток тарифа. Стоит оговориться, что рассмотрено для наглядности три варианта. Суммарное потребление электроэнергии с заданной квартиры за месяц выбрано за 100 процентов, а минимальный шаг для изменения соотношения – 10 процентов.

Первый вариант представляет собой распределение ежемесячного потребления электроэнергии в следующих частях – 10 процентов в дневное время и 90 процентов в ночное.

Таблица 1

Тарификация электроэнергии при 10 процентах потребления в дневное время и 90 процентах в ночное

Рис.11 Интеллектуальная энергетика

Из таблицы видно, что при заданных условиях потребитель будет существенно экономить, в частности, потенциально сэкономленных денег (разница между выбранными системами тарификации) хватит для оплаты электроэнергии более чем за три месяца при старом одноставочном тарифе.

Во втором варианте представлена наиболее негативная ситуация, поскольку «выгодные» часы используются минимально и потребитель тратит «дорогую» электроэнергию.

Таблица 2

Тарификация электроэнергии при 90 процентах потребления в дневное время и 10 процентах в ночное

Рис.12 Интеллектуальная энергетика

Разница между выбранными системами тарификации составляет 1131,072 рублей, что говорит о том, что выбранный вариант крайне неэффективен для потребителя, поскольку он, упрощённо можно сказать, оплачивает ещё и «тринадцатый месяц» (959 рублей стоит ежемесячная оплата при одноставочной тарификации).

Таблица 3

Тарификация электроэнергии при 50 процентах потребления в дневное время и 50 процентах в ночное

Рис.13 Интеллектуальная энергетика

Аналогично первому и второму вариантам рассматривается третий, который включает равное процентное соотношение между дневными и ночными часами.

Как видно из таблицы, из трёх вариантов данный является наиболее оптимальным, поскольку сочетает в себе более разумное распределение потребления электроэнергии за сутки, а также приводит к экономической выгоде для потребителя.

Таким образом, можно сделать вывод, что АСКУЭ является актуальным системой, которая способствует эффективному расходованию энергоресурсов. Помимо борьбы с коммерческими потерями, она выступает активным элементом при внедрении дифференцированных по зонам суток тарифов электроэнергии.

В упрощённом виде на рассмотренном примере было выявлено, что наиболее оптимальный вариант данной дифференцированной тарификации представляет собой равное распределение потребление электроэнергии между дневными и ночными часами.

Список используемой литературы

1. Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные акты Российской Федерации: Федеральный закон № 261-ФЗ: [принят Государственной думой 11 ноября 2009 года: одобрен Советом Федерации 18 ноября 2009 года]: (с изменениями на 26 июля 2019 года). – Доступ из справ. – правовой системы «КонсультантПлюс» (дата обращения: 10.11.2020). – Текст: электронный.

2. Барнаульская горэлектросеть: [сайт]. – Барнаул, 2019 —. – URL: http://bges.ru/ (дата обращения: 07.11.2020). – Текст: электронный.

Информация об авторах

Хомутов С. О. – д.т.н., профессор, Рассохина Е. О. – студент группы 8Э-01, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова», РФ, Алтайский край, г. Барнаул.

Методика формирования математических моделей для расчёта удельной мощности для помещений промышленного и общественного назначения

Тюрина Наталья Александровна, [email protected]

Грибанов Алексей Александрович, [email protected]

Аннотация:

В статье подробно рассмотрен метод регрессионного моделирования для формирования математической модели расчета для последующего расчета удельной мощности для проектирования освещения в помещениях промышленного и общественного назначений. Также в статье представлен подробный расчет относительной погрешности модели.

Ключевые слова: метод удельной мощности, математическая модель, регрессионное моделирование, освещенность, источники света.

Расчет электрических нагрузок является основополагающим этапом проектирования систем электроснабжения. Электрические нагрузки подразделяются на силовые и осветительные. На сегодняшний день существуют три наиболее популярных метода расчета осветительных нагрузок: метод удельной мощности, точечный метод, метод коэффициента использования. Метод удельной мощности наиболее часто используется проектировщиками для приближенного расчета мощности осветительного оборудования, отличается простотой использования и сравнительно малым объемом исходных данных, что значительно расширяет круг его использования. Значения удельной мощности были получены в середине двадцатого столетия и, к сожалению, их использование для современных светодиодных и люминесцентных источников некорректно[1]. В ходе эксперимента мною были получены актуальные значения для таких источников.

В рамках исследования было проведено 830 экспериментов путем расчета в среде Dialux evo, рассмотрено 29 расчетных случаев. Расчетный случай – это помещение общественного и промышленного назначения, для которых определялись нормируемая освещенность, высота подвеса источников света, площадь. Помимо этого, для каждого расчетного случая было отобрано 6 источников света. Всего в эксперименте участвовало 49 источников света.

В ходе исследования были получены математические модели, для каждой из которых посчитаны относительная погрешность источника света и относительная погрешность для расчетного случая. Значения относительных погрешностей лежат в допустимом диапазоне, что позволяет в дальнейшем рассчитывать мощность источников света для проектирования освещения в помещениях промышленного и общественного назначений для входных параметров, не участвовавших в эксперименте.

Общий вид математической модели (1):

𝑊=𝑎∙𝑆4+𝑏∙𝐸4+𝑐∙𝑆3+𝑑∙𝐸3+𝑒∙𝑆3𝐸+𝑓∙𝑆3𝐻𝑝+𝑔∙𝐸3𝐻𝑝+ℎ∙

𝐸3𝑆+𝑖∙𝐻𝑝2+𝑗∙𝑆2+𝑘∙𝐸2+𝑙∙𝐻𝑝2𝑆+𝑚∙𝐻𝑝2𝑆2+𝑛∙𝐻𝑝2𝐸2+𝑜∙𝑆2𝐸2+𝑝∙

𝐻𝑝2𝐸+𝑞∙𝑆2𝐻𝑝+𝑟∙𝑆2𝐸+𝑠∙𝐸2𝑆+𝑡∙𝐸2𝐻𝑝+𝑢∙𝐻𝑝2∙𝑆∙𝐸+𝑣∙𝐻𝑝∙𝑆2∙𝐸+

𝑤∙𝐻𝑝∙𝑆∙𝐸2+𝑥∙𝐻𝑝+𝑦∙𝑆+𝑧∙𝐸+𝛼∙𝐻𝑝∙𝑆+𝛽∙𝐻𝑝∙𝐸+γ∙𝑆∙𝐸+𝛿∙𝐻𝑝∙𝑆+𝜀

(1)

где – значение удельной мощности осветительной нагрузки на единицу площади помещения, Вт/м2;

a, b, c, d, e, f, g, h, i, j,k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, 𝛼,𝛽,γ,𝛿,𝜀 – коэффициенты регрессионного уравнения, которые необходимо определить.

Для определения значения уровня варьирования применялась следующая формула (2):

Рис.14 Интеллектуальная энергетика

где 𝑋пр𝑖 – значение параметра, приведённое к шкале от −1 до +1;

𝑋𝑖 – текущее значение параметра, абс. ед.;

𝑋𝑚𝑎𝑥 – максимальное значение параметра, абс. ед.;

𝑋𝑚𝑖𝑛 – минимальное значение параметра, абс. ед.

Уровни варьирования для использовавшихся в экспериментах параметров ниже приведены в таблице 1.

Таблица 1

Уровни варьирования параметров

Рис.15 Интеллектуальная энергетика

Для определения коэффициентов уравнения приведем результаты расчётного эксперимента к табличному виду. В дальнейших таблицах для упрощения введён параметр X0=1, соответствующий свободной переменной, перед которой стоит коэффициент.

Данные эксперимента для источника света ULV-R24J представлены в таблице 2.

Таблица 2

Таблица эксперимента для источника света ULV-R24J

Рис.16 Интеллектуальная энергетика
Рис.17 Интеллектуальная энергетика
Рис.18 Интеллектуальная энергетика
Рис.19 Интеллектуальная энергетика
Рис.20 Интеллектуальная энергетика
Рис.21 Интеллектуальная энергетика
Рис.22 Интеллектуальная энергетика

Для определения коэффициентов уравнения была составлена матрица Х, включающая в себя закодированные условия эксперимента (столбцы 2-32 таблицы 2) и матрица Y, включающая в себя результаты эксперимента (столбец 33 таблицы 2). Далее матрица Х транспонируется и умножается на исходную матрицу Х, получается матрица Xт ·X. Матрица Y также умножается на транспонированную матрицу X, получается матрица Xт ·Y. Затем для матрицы Xт ·X вычисляется обратная матрица матрицы Xт·X-1. Перемножив обратную матрицу Xт ·X-1 и матрицу Xт ·Y получим матрицу коэффициентов уравнения. Аналогичные действия были проведены и для других источников. Коэффициенты уравнения представлены в таблице 3.

Таблица 3

Значения коэффициентов уравнения для источника света ULV-R24J

Рис.23 Интеллектуальная энергетика

Подставив в уравнение регрессионной модели значение коэффициентов получим расчетные значения удельной мощности. Для проверки модели необходимо определить погрешность по следующей формуле (3):

Рис.24 Интеллектуальная энергетика

где 𝛿- относительная погрешность модели;

Э-значение, полученное экспериментальным путем

Р- значение, полученной в ходе расчетов.

Погрешность модели представлена в таблице 4.

Таблица 4

Погрешность модели

Рис.25 Интеллектуальная энергетика

Средняя относительная погрешность модели рассчитывается по формуле (4):

Рис.26 Интеллектуальная энергетика
Список используемой литературы

1. СП52 13330.2016. Естественное и искусственное освещение. Общее положение: дата ведения 1996-01-01. – Москва: Стандартинформ, 2017. – 135с.

Информация об авторах

Грибанов А. А. – к. т. н., доцент, Тюрина Н. А. – студент группы 8Э-01, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова», РФ, Алтайский край, г. Барнаул.

Средства повышения качества электрической энергии в магистральных электрических сетях

Белицын Игорь Владимирович, [email protected]

Попов Андрей Николаевич, [email protected]

Попов Константин Павлович, [email protected]

Аннотация:

Одной из важнейших задач электроэнергетики является повышение качества электрической электроэнергии. В работе произведен анализ нормативных документов регламентирующих показатели качества электрической энергии. Рассмотрены основные технические мероприятия позволяющие повысить качество электроэнергии.

Ключевые слова: качество электрической энергии, импульсные напряжения, система электроснабжения, компенсация реактивной мощности, регулирование напряжения.

MEANS OF IMPROVING THE QUALITY OF ELECTRIC ENERGY IN MAIN ELECTRIC NETWORKS

Belitsyn Igor Vladimirovich, Associate Professor, [email protected]

Popov Andrey Nikolaevich, [email protected]

Popov Konstantin Pavlovich, [email protected]

Abstract:

One One of the most important tasks of the electric power industry is to improve the quality of electric power. The paper analyzes the normative documents regulating the quality indicators of electric energy. The main technical measures to improve the quality of electricity are considered.

Keywords: quality of electrical energy, pulse voltages, power supply system, reactive power compensation, voltage regulation.

Снижение качества электроэнергии является неотъемлемой частью цикла производства и потребления. На всех стадиях электроэнергия претерпевает изменения, поэтому получение идеальной синусоидальной трехфазной системы напряжений задача труднореализуемая. Поэтому основной задачей является именно минимизация влияния всех ступеней электроэнергетической системы на качество энергии.

Если говорить о системе генерации, то реализация задачи повышения качества упирается в совершенствование конкретных силовых машин, а именно генераторов, более точная подгонка деталей, использование новых магнитных материалов, работа с системами стабилизации генераторов, по типу АРВ, во время возникновения крупных аварий.

Поэтому еще на стадии генерации мы получаем синусоиду отличную от идеально, но наибольшее искажение электроэнергия претерпевает именно в системах передачи, распределения и потребления. Большая часть энергии просто теряется в линиях электропередач, переходя в тепло, а форма кривой напряжения искажается нагрузкой.

Все это негативно сказывается на системе в целом, и на потребителях этой самой энергии в первую очередь.

В понятие качества электроэнергии входит большое количество параметров, которые регламентируются стандартами ГОСТ 32144-2013.

К параметрам качества электроэнергии относят:

– Отклонение частоты;

– Отклонение напряжения;

– Суммарный коэффициент гармонических составляющих напряжения;

– Колебания напряжения и фликер;

– Несинуидальность напряжения;

– Несимметрия напряжения;

– Провалы напряжения и перенапряжения;

– Импульсные напряжения;

– Максимальное значение и длительность перенапряжения.

Также параметры качества электроэнергии принято делить на две группы: длительные и кратковременные.

Возникновение кратковременных изменений параметров качества электроэнергии, как правило, обусловлено коммутацией нагрузки большой мощности, грозовой активностью, авариями в сети.

Например, появление кратковременных перенапряжений может быть вызвано ударами молний вблизи линий электропередач или подстанций. Провалы напряжения могут быть следствием возникновения коротких замыканий, или включение в сеть мощной нагрузки.

Причины длительных отклонений параметров качества могут быть обусловлены особой нагрузкой, либо структурой сети, проектными ошибками, связанными с выбором оборудования или уровней напряжения, либо возрастающим уровнем нагрузки в сети, дисбалансом активной и реактивной мощности. Также сюда можно отнести длительные ненормальные режимы в распределительных сетях.

Со стороны потребителя выделяют приемники с нелинейной вольтамперной характеристикой, или несимметричной пофазной нагрузкой.

К нелинейной нагрузке относятся вентильные преобразователи, электродуговые сталеплавильные печи, установки дуговой и контактной сварки. Работа таких устройств вызывает возникновение высших гармонических составляющих, которые накладываются на основную частоту кривой напряжения, искажая ее. В преобразователях могут возникать гармоники вплоть до 25-го порядка, в печах это гармоники с 3 по 7, в сварке с 5 по 11.

Искажение формы кривой напряжения приводит к возникновению дополнительных потерь активной мощности во всех элементах сети: линиях электропередач, трансформаторах, электрических машинах, поскольку их сопротивление зависит от частоты. Также может возникать перегрев обмоток двигателей из-за возникновения паразитных полей, ускорение процесса старения изоляции в кабелях, трансформаторах и электрических машинах.

Несимметричная нагрузка обладает фазными токами, отличающимися своими величинами, что приводит к различным потерям напряжения в разных фазах. Несимметрия напряжений в сети вызывает перегрев обмоток асинхронных двигателей, в синхронных машинах возникают опасные вибрации.

Большое влияние на качество электроэнергии оказывает сама структура сетей и их топология. Говоря о совокупности сетей и качества электроэнергии обычно говорят о проблеме больших потерь электроэнергии. Поскольку наибольших уровень потерь, а именно, более 60 % от общего числа приходится именно на передачу электроэнергии по линиям электропередач и еще около 17 % приходится на эффект возникновения коронного разряда в магистральных сетях высокого напряжения. В распределительных сетях большие потери обусловлен высоким уровнем морального и технического устаревания сетевого комплекса.

Большие потери снижают общий уровень экономичности сетей и качества электроэнергии в целом, приводя к снижению питающего напряжения на шинах потребителя. От пониженного уровня напряжения в первую очередь страдают асинхронные двигатели, увеличивая свой потребляемый ток, что приводит к перегреву обмоток и старению изоляции. В целом работа на напряжении ниже номинального для всех видов нагрузок приводит к уменьшению их срока службы, а иногда и полному выходу из строя.

Для повышения качества электроэнергии используются различные технические мероприятия.

Традиционно, для повышения качества электроэнергии в электрических сетях применяют следующие технические мероприятия:

– Регулирование напряжения;

– Компенсация реактивной мощности;

– Установка фильтров;

– Оптимизация схем и режимов работы сети;

– Установка вольтодобавочных трансформаторов.

– Применение динамических компенсаторов искажения напряжения;

– Выравнивание нагрузок фаз;

Список используемой литературы

1. ГОСТ 32144–2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. – Введ. 2014–07–01. – М.: Стандартинформ, 2014. – 19 с.

2. Железко. Ю. С. Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов. М.: ЭНАС, 2009. – 456 с.

3. Жежеленко, И. В… Высшие гармоники в системах электроснабжения промпредприятий / Жежеленко И. В. – М.: Энергоатомиздат, 2000.

4. Belitsyn I.V. The quality of electric power as a complex index / I.V. Belitsyn // International Conference «Process Management and Scientific Developments», Birmingham, United Kingdom, September. 2017. pp. 113–121.

5. Белицын, И. В. Оптимальный параметр регуляризации для определения электромагнитной совместимости линии электропередачи / И. В. Белицын // III международная научно-практическая конференция «Европейские научные исследования», Пенза, МЦНС «Наука и просвещение», 2017. С 48–53.

6. Белицын, И. В. Качество электрической энергии, проблемы нормативной базы / И. В. Белицын // Международная научно-практическая конференция «Прикладные и теоретические исследования», Самара, ЦНИК «Наука и просвещение», 2017. С 24–27.

Информация об авторах

Белицын И. В. – к. п. н., доцент, Попов А. Н. – к. т. н., доцент, Попов К. П. – студент группы 8Э-91, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова», РФ, Алтайский край, г. Барнаул.

Разработка оптимальной конструкции автоматического пункта секционирования для воздушных электрических сетей напряжением 6-10 кв

Попов Андрей Николаевич, [email protected]

Прийма Дмитрий Игоревич, [email protected]

Аннотация:

С целью повышения надежности электроснабжения в электрических сетях используются автоматические пункты секционирования (АПС), которые разделяют (секционируют) линию на участки, что приводит к значительному сокращению времени отключенного состояния потребителей в случае возникновения аварии. Наиболее часто технологические нарушения происходят в сетях напряжением 6 – 10 кВ и приводят к большому недоотпуску электрической энергии. Наиболее протяженные фидеры, которые имеют длинные ответвления или ответственных потребителей, делят на части (секционируют), где и ставится автоматический пункт секционирования.

Наличие большого количества функций реклоузера приводит к усложнению конструкции, и в следствии этого, высокой стоимости. Установка дорогостоящих реклоузеров на воздушную линию напряжением 6 – 10 кВ не даёт положительного экономического эффекта на большинстве линий, а, следовательно, проблема с большим количеством недоотпуска электроэнергии в сетях 6 – 10 кВ остается нерешенной. Целью данной работы является разработка оптимальной конструкции автоматического пункта секционирования, использование которого позволит повысить эффективность процессов передачи и распределения электрической энергии путем совершенствования системы секционирования электрических сетей напряжением 6 – 10 кВ в условиях существующих линий электроснабжения и тем самым повысить надежность электроснабжения и сократить время перерывов в электроснабжении потребителей. В данной статье приводится описание предложенных вариантов оптимизации конструкции реклоузера для электрических сетей напряжением 6 – 10 кВ.

Ключевые слова: автоматический пункт, надежность, секционирование, конструкция, эффект, цифровизация, электроснабжение, блок управления.

Наиболее эффективным способом повышения надежности электроснабжения в воздушных электрических сетях среднего напряжения является секционирование линии коммутационными аппаратами (разъединителями, управляемыми разъединителями, пунктами секционирования). В существующих схемах построения распределительных сетей чаще всего используется ручной подход к управлению аварийными режимами.

Исследования специалистов свидетельствуют о том, что одним из наиболее эффективных способов повышения надежности электроснабжения в воздушных распределительных сетях является реализация автоматического подхода к управлению аварийными режимами, при котором обеспечивается полная независимость работы пунктов секционирования от внешнего управления. Этот подход также получил название децентрализованного. Каждый отдельный аппарат, являясь интеллектуальным устройством, анализирует режимы работы электрической сети и автоматически производит ее реконфигурацию в аварийных режимах, то есть локализацию места повреждения и восстановление электроснабжения потребителей неповрежденных участков сети [1].

Традиционные пункты секционирования, выполненные на базе ячеек КРУН, имеют в своем составе классические защиты, выполненные на электромеханических или микропроцессорных терминалах реле. Такие защиты весьма затруднительно использовать на магистральных участках сети, особенно в сетях с двухсторонним питанием. К классическим защитам не предъявляются требования о возможности реализации многократных АПВ, не требуются и независимые установки при различных направлениях потока мощности. Минимальная ступень селективности классических микропроцессорных защит составляет 0,3 с, электромеханических – от 0,5 с. Всего этого недостаточно для реализации децентрализованного подхода. Как следствие, большая часть установленных пунктов секционирования чаще всего работает по ручному принципу.

Аппаратом, отвечающим всем требованиям децентрализованного подхода, является вакуумный реклоузер, представляющий собой совокупность вакуумного коммутационного модуля со встроенной системой измерения токов и напряжения и шкафа управления с микропроцессорной системой релейной защиты, и автоматики [2].

Реклоузер выполняет:

– оперативные переключения в распределительной сети (местная и дистанционная реконфигурация);

– автоматическое отключение поврежденного участка;

– автоматическое повторное включение воздушных ЛЭП;

– автоматическое выделение поврежденного участка;

– автоматический ввод резерва;

– автоматический сбор, обработку и передачу информации о параметрах режимов работы сети и состоянии собственных элементов.

Основным элементом реклоузера, его коммутирующим устройством является вакуумный выключатель. Для вакуумных выключателей характерна высокая скорость срабатывания (десятые доли секунды) и возможность автоматического управления в нештатных ситуациях.

Вакуумные выключатели на номинальное напряжение 6 – 10 кВ выпускаются многими предприятиями нашей страны. В настоящее время в реклоузерах чаще всего применяются следующие вакуумные выключатели отечественных производителей:

– ВВ/TEL-10, «Таврида Электрик» (г. Москва);

– ВВР-10, «Росвакуум» (г. Москва);

– ВВМ-СЭЩ-3-10, «Самараэлектрощит» (г. Самара);

– EX-ВВ, «КЭПС» (г. Новосибирск);

– ВВ/AST-10, «Астер Электро» (г. Новосибирск).

Первые четыре позиции в списке занимают вакуумные выключатели внутренней установки, что означает, что они должны быть заключены в корпус, защищающий аппарат от осадков и других нежелательных внешних воздействий. Выключатель ВВ/AST-10 позиционируется как устройство наружной установки, то есть может устанавливаться без защитного кожуха.

В настоящее время бытует мнение, что наилучшими качеством обладают вакуумные выключатели ВВ/TEL «Таврида Электрик». Возможно, так оно и есть, однако, существенных различий в надежности выключателей разных производителей пока не обнаружено, а вот по цене выключатели ВВ/TEL точно являются «лидерами», превосходя цену конкурентов иногда более, чем на 60 тысяч рублей.

Микропроцессорная защита – это устройство управления реклоузером. Чтобы вакуумный выключатель сработал и отключил линию в аварийной ситуации, нужно, чтобы кто-то обнаружил нештатную ситуацию отправил соответствующую команду на отключение. Причем сделать это необходимо за доли секунды, пока аварийная ситуация не привела к необратимым последствиям.

Команду на отключение вакуумного выключателя посылает устройство релейной защиты и автоматики (РЗА). Название "релейная защита" устоялось еще с тех пор, когда управляющими устройствами были обычные электромеханические реле. В настоящее время электромеханические реле повсеместно заменяются микропроцессорными устройствами защиты. Микропроцессорные устройства (микропроцессорные терминалы защиты) по цене сопоставимы с традиционными реле, не уступают им по надежности, но при этом значительно превосходят по функциональности и удобству настройки и обслуживания [3].

Существует четыре основных группы реклоузеров:

– реклоузеры на специализированных датчиках тока и напряжения;

– пункты секционирования на традиционных трансформаторах тока;

– пункты секционирования с функцией учета электроэнергии;

– пункты отключения линии на базе вакуумного выключателя нагрузки.

Все существующие 4 группы пунктов секционирования имеют ряд недостатков, которые не позволяют устанавливать их повсеместно на большинстве воздушных линий.

Для повышения надежности электроснабжения потребителей и электроприемников, автоматизации процессов поиска и локализации повреждений на линии, нужно устройство для электрических сетей напряжением 6 – 10 кВ, способное производить двух – трех кратное автоматическое повторное включение линии при возникновении кратковременного короткого замыкания, автоматизировать устройство путем создания связи его работы с диспетчерским управлением, оптимизировать конструкцию путем включения вакуумного выключателя нагрузки, в замен дорогостоящих вакуумных выключателей, а также создать собственный блок управления, обеспечивающий все требуемые виды защит и автоматики.

Вакуумный выключатель нагрузки с моторным приводом позволит исключить из устройства линейные разъединители, так как сам позволяет наблюдать видимый разрыв и механически производить заземление.

Первым этапом практической реализации устройства стала разработка его структурной схемы. Она изображена на рисунке 1.

Рис.27 Интеллектуальная энергетика

Рисунок 1

Структурная схема устройства

Основными составляющими устройства предполагаются: ВПТ – входной преобразователь тока; ВПН – входной преобразователь напряжения; БУ – блок управления; КМ – коммутационный модуль; ТСН – трансформатор собственных нужд; ДП – диспетчерский пункт.

Работа устройства осуществляется следующим образом: входные преобразователи преобразуют фазные токи и напряжения в величины доступные для восприятия блока управления, блок управления на основе полученных мгновенных значений фазных токов и напряжений осуществляет вычисление действующих значений и подает напряжение на привод коммутационного модуля.

Вторым этапом практической реализации устройства стала разработка его принципиальной схемы. Она изображена на рисунке 2.

Следующим этапом практической реализации устройства стала разработка блока управления. 3D-визуализация платы представлена на рисунках 3 и 4.

Комплексная цифровизация путем построения «умной сети» предполагает внедрение вторичного оборудования, обеспечивающего наблюдаемость и автоматическое режимное управление сетями и не предусматривает замену основного оборудования подстанций, реконструкцию линий электропередачи. Разработанное устройство позволит автоматизировать работу распределительных сетей 6 – 10 кВ посредством автоматического повторного включения без особо крупных затрат и с впечатляющим экономическим эффектом.

Рис.28 Интеллектуальная энергетика

Рисунок 2

Принципиальная схема подключения устройства к ВЛ

Рис.29 Интеллектуальная энергетика

Рисунок 3

3D-визуализация печатной платы (вид со стороны элементов)

Рис.30 Интеллектуальная энергетика

Рисунок 4

3D-визуализация печатной платы (вид с оборотной стороны)

Годовой экономический эффект от внедрения одного устройства составляет 20 137,01 р./год [4].

При комплексном применении современных технологий, направленных на цифровизацию, планируется достижение следующих эффектов:

– снижение потерь электроэнергии;

– снижение затрат на обслуживание сетей напряжением 6 – 10 кВ;

– улучшение показателей надежности сетей напряжением 6 – 10 кВ (средней продолжительности и частоты отключений) на 75 %.

Использование предлагаемого устройства позволит:

– снизить длительности перерывов в электроснабжении потребителей;

– увеличить надежность электроснабжения потребителей;

– уменьшить недоотпуск электроэнергии;

– повысить производительность труда персонала и сократить затраты на ГСМ.

Разработанное устройство, принцип работы которого достаточно прост, несомненно является надежным и эффективным средством повышения надежности потребителей с конкурентной ценой на рынке.

Список используемой литературы

1. Алферова, Т. В. Надежность электроснабжения потребителей агропромышленного комплекса: Учеб. пособие. – Текст: непосредственный / Т. В. Алферова, О. Ю. Пухальская, А. А. Алферов. – Гомель: Изд-во ГГТУ им. П. О. Сухового, 2017. – С. 90–106.

2. Документация по реклоузерам серии REC15 и REC25.– Текст: электронный. – . Загл. с экрана. – URL: https://www.tavrida.com/upload/iblock/0f0/TER_RecDoc_PG_1.pdf. – Режим доступа: свободный.

3. Пухальская, О. Ю. Выбор мест установки пунктов автоматического секционирования в распределительных электрических сетях сельскохозяйственного назначения. – Текст: электронный. – Загл. с экрана. – URL: https://www.elibrary.ru/item.asp?id=29671543. – Режим доступа: для зарегистрированных пользователей

4. Гришин, Д. А. Экономическая эффективность применения вакуумных реклоузеров серии PBA/TEL. – Текст: электронный. – Загл. с экрана. – URL: https://www.elibrary.ru/item.asp?id=26648185. – Режим доступа: для зарегистрированных пользователей

Информация об авторах

Попов А. Н. – к. т. н ., доцент, Прийма Д. И. – студент группы 8Э-91, ФГБОУ ВО «Алтайский. государственный технический университет им. И. И. Ползунова», РФ, Алтайский край, г. Барнаул.

Цифровые системы диагностики подстанций энергетического комплекса ОАО «РЖД»

Сташко Василий Иванович, [email protected]

Пеняйкин Артём Леонидович, [email protected]

Аннотация:

Одной из целей представленных в данной статье исследований, является повышения надежности электроснабжения объектов ОАО «РЖД». Данная цель обусловлена тем, что одной из важнейших задач программы инновационного развития ОАО «РЖД» является реализация комплексного проекта «Цифровая железная дорога», который направлен на повышение эффективности деятельности компании за счет применения передовых информационных технологий. В статье рассматриваются примеры реализации проектов по развитию железнодорожного транспорта с использование внедрения цифровых систем на подстанциях энергетического комплекса ОАО «РЖД», таких как, например, частотно-диспетчерский контроль. Особое внимание уделяется проблемам безопасности железнодорожного транспорта, что в немалой степени обеспечивается за счет повышения надежности электроснабжения за счет внедрения цифровых систем диагностики на трансформаторных подстанциях. В статье рассмотрена система мониторинга работоспособности, надежности и безопасности железнодорожных электрических сетей, и система АСКУЭ.

Ключевые слова: частотно-диспетчерский контроль, мониторинг, цифровизация, производительность труда, энергоэффективность.

В России на железные дороги приходится более 45 % общероссийского грузооборота и более 25 % пассажирооборота, и поэтому они остаются важнейшим видом транспорта в стране. Это связано с тем, что в нашей стране с суровыми погодными условиями именно этот вид транспорта в достаточной мере способен на удовлетворение потребностей экономики и населения. В условиях индустрии и высококонкурентного транспортного рынка устойчивое развитие этого значимого сектора транспортной отрасли во многом зависит от стремления к разработке и внедрению инновационных технологий. Ведь ОАО «РЖД»– это огромное предприятие, для контроля которого возможностей человека уже недостаточно, и в дело вступает цифровизация.

Одной из важнейших задач программы инновационного развития ОАО «РЖД-2020» является реализация комплексного проекта «Цифровая железная дорога», направленный на повышение эффективности деятельности компании за счет применения прорывных информационных технологий. Цель цифровизации энергетики состоит в создании условий для цифровой трансформации ТЭК России, внедрения цифровых технологий и платформенных решений. Для достижения системного эффекта от цифровизации необходимо объединить усилия всех сторон государства, компаний, инновационного сообщества, науки.

Энергообеспечение является важнейшей сферой деятельности в ОАО «РЖД». От бесперебойного снабжения электроэнергией зависит эксплуатация подвижного состава и надежная работа устройств автоматики и телемеханики, работу железнодорожных сооружений.

За последние десятилетия железная дорога постепенно ввела новые технологии. Примером может служить «Цифровой мониторинг», суть его работы заключается в отслеживании на компьютере положение напольных устройств СЦБ, а также контроль движения и местоположения подвижного состава. Также с помощью мониторинга производится контроль за правильностью выполнения графика технологического процесса и за качеством проведения различного рода работ, и проведения проверок после них, согласно технологическим картам и инструкциям. Вторым примером развития железнодорожного транспорта в области цифровизации, это «частотно-диспетчерский контроль» (ЧДК). С помощью ЧДК происходит значительная экономия средств. На каждой сигнальной точке перегона установлены генераторы ЧДК, которые в свою очередь контролируют наличие как основного питания (ПХ, ОХ), так и резервного (РПХ, РОХ), а также целостность ламп, исправность аппаратуры, установленной в релейном шкафу на сигнальной точке. Работа ЧДК позволяет выявить отказные и предотказные состояния. Еще одним доказательством успешной реализации проектов, связанных с цифровизацией, является автоматизированная система контроля и учета энергоресурсов (АСКУЭ) ОАО «РЖД», включающая в себя более 250 тысяч пунктов учета электроэнергии.

Развитие АСКУЭ позволит ОАО «РЖД»:

– осуществлять автоматические действия во внештатных ситуациях;

– определять точное время конца жизнедеятельности оборудования;

– исключать человеческий фактор ошибок;

– автоматически прогнозировать продажу электроэнергии с помощью искусственного интеллекта и др.

С этой целью в ОАО «РЖД» предусмотрены значительные финансирования на внедрение АСКУЭ. (рисунок 1).

Существует система мониторинга работоспособности надежности и безопасности АСКУЭ, которая в свою очередь осуществляет наблюдение за приборами системы, формирует отчет об их состоянии, оптимизирует их работу, контролирует своевременную замену, объединятся в одно целое с системами телеизмерений и технологическими системами, которые располагаются на подстанции.

Начала реализовываться система центров планирования и контроля потребления электроэнергии ОАО «РЖД» (ЦПК). Данный проект помогает решить множество проблем:

– прогнозировать продажу электроэнергии;

– устанавливать причины отличия планового и фактического потребления;

– контролировать поставки электроэнергии;

– контролировать исправность работы всех видов АСКУЭ.

ЦПК включает в себя следующие основные составляющие:

raid-массивы – технология, позволяющая объединять устройства (жесткие диски) в единое целое, что способствует быстрой обработке информации и надежному ее хранению;

– автоматизированные рабочие места диспетчеров;

– систему контроля доступа и систему безопасности персонала;

– систему бесперебойного электроснабжения.

Для исправной работы ЦПК человек обязан проводить некоторые мероприятия:

– осуществлять контроль работоспособности оборудования систем электроснабжения на местах;

– обновлять программное обеспечение;

– по результатам отчетов системы осуществлять ремонт оборудования;

– вести документацию эксплуатации.

Рис.31 Интеллектуальная энергетика

Рисунок 1

Инвестиции на внедрение АСКУЭ

Внедрение цифровизации позволит произвести оптимизацию штата, что является плюсом для компании в целях экономии, но минусом для государства, т. к. повысится безработица. Для предотвращения этого можно работников, которые попали под оптимизацию, отправить на переобучение, и после эти работники будут проводить мероприятия, направленные на обеспечение исправной работы ЦПК.

Если рассматривать перемещение информации средствами цифровизации в системе электроснабжения, можно выделить три уровня:

– тяговые и трансформаторные подстанции, системы тягового электроснабжения, линейные устройства;

– дистанции электроснабжения, линейные устройства;

– дирекции по энергообеспечению.

На первом уровне сервер располагается на подстанции и собирает, обрабатывает данные с оборудования. Данная информация представляет из себя отчет с задачами, стоящими перед ремонтным персоналом, и отчет о техническом состоянии каждого элемента подстанции. Эта информация поступает на второй и третий уровни. Ее передача осуществляется следующим образом: если на первом уровне не приняты своевременные меры по решению проблемы, то информация передается на второй уровень, а при такой же ситуации на втором уровне- передается на третий. Такой подход позволяет избежать избыточности информации и дублирования функций.

Цифровизация в электроснабжении ОАО «РЖД» повышает производительность труда, снижает его стоимость, улучшает контроль и безопасность производства и является основой бесперебойного энергообеспечения транспортного процесса.

Список использованной литературы

1. Приложение № 4 к протоколу заседания совета директоров ОАО «РЖД».-2019. – С. 9.

2. Давыдов, Н. Цифровая подстанция/ Н. Давыдов // Евразия вести. – 2019. – С. 4.

3. Материалы VII всероссийской студенческой научной конференции с международным участием: В 4 ч. / Омской гос. Ун-т путей сообщения. Омск, 2020. Ч. 1. 472 с.

Информация об авторах

Сташко В. И. – к.т.н., доцент, Пеняйкин А. Л. – студент группы 4Э(с)-72, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова», РФ, Алтайский край, г. Барнаул.

Разработка комплекса мероприятий, направленных на модернизацию системы управления стабилизатора напряжения

Востриков Сергей Витальевич, [email protected]

Попов Андрей Николаевич, [email protected]

Аннотация: Постоянная необходимость в снижении затрат на устройства, повышение эффективности и надежности, тенденция к постоянному росту энергопотребления в мире, требует от проектировщиков новых методов разработки с использованием более функциональных и гибких составляющих в своих устройствах. Поэтому в данной статье рассматривается разработка комплекса мероприятий по модернизации систем управления стабилизатором напряжения, а также проектирование устройства индикации и управления трехфазным стабилизатором напряжения. Актуальность проводимых исследований обусловлена цифровым переходом и необходимостью применения современных микропроцессорных систем управления для использования в их составе устройств стабилизации напряжения. Использование разработанной системы управления стабилизатором напряжения позволит повысить качество электроэнергии в электрических сетях напряжением до 1000 В, сократить экономические издержки на производстве, уменьшить размер брака выпускаемой продукции, модернизировать устаревшие устройства стабилизации напряжения на предприятии.

Ключевые слова: качество электроэнергии, устройства регулирования напряжения, микропроцессорные технологии, печатная плата, полупроводниковые элементы, микроконтроллер.

Надежность работы, технологического электрооборудования в промышленных сетях, непосредственно связана с качеством электроэнергии.

В случае несоответствия параметров качества электроэнергии (ПКЭ), установленных в [1], возможно возникновение нарушений в работе оборудования, снижение его срока службы и экономических показателей [3]. Основными причинами снижения качества электроэнергии является:

– – изношенность оборудования, систем управления и распределительных сетей;

– отсутствие контроля электроэнергии и защиты от помех, вносимых этими же устройствами;

– включение в сеть устройств с нелинейной вольтамперной характеристикой;

– недостаточный уровень использования устройств регулирования ПКЭ.

Большая часть технологического электрооборудования особо чувствительна к колебаниям и отклонениям напряжения. Так, например, вентильные выпрямительные агрегаты выходят из строя при размахе напряжения в 10–15 %, на металлургических заводах чувствительны к перепадам станы непрерывной прокатки, а у турбогенераторов возникают качания, особо высокие требования выдвигаются к точности поддержания частоты вращения приводов, в качестве которых используют асинхронные двигатели. Поскольку получить требуемое стабильное напряжение в современных разветвленных сетях очень сложно, а иногда и невозможно, в виду разброса в сети, который определяется колебаниями в сети, разностью напряжения при нагрузке и холостом ходе, возникает необходимость в регулировании напряжения.

Анализ устройств регулирования напряжения в сетях промышленных предприятий показал, что к основным техническим средствам регулирования напряжения относят:

– регулирование напряжения на электростанциях;

– регулирование напряжения на понижающих подстанциях;

– специальные регулирующие устройства;

– компенсирующие устройства.

В общем случае к регулированию напряжения на шинах электрической станции относят автоматическое регулирование с помощью быстродействующего автоматического регулятора возбуждения (АРВ) синхронных генераторов. В этом случае должно обеспечиваться автоматическое распределение реактивной мощности между генераторами и поддерживаться напряжение на шинах электростанции или в другой точке электроэнергетической системы (ЭЭС).

На понижающих подстанциях напряжение регулируется путем установки специального устройства – регулятор под нагрузкой (РПН), представляющее собой автоматическое устройство, меняющее ответвление витков обмотки трансформатора, тем самым, изменяя коэффициент трансформации.

Приведенные выше способы относятся к централизованному регулированию напряжения, и в ряде случаев оказываются недостаточными.

Для электроприемников, чувствительных к колебаниям напряжения, устанавливают вольтодобавочные трансформаторы (ВДТ), индивидуальные стабилизаторы напряжения. ВДТ включаются вторичной обмоткой последовательно линии и могут быть установлены в любой точке электрической сети, могут устанавливаться в сетях напряжением до 1000 В на линиях, к которым непосредственно подключены электроприемники. Регулирование напряжения осуществляется за счет изменения коэффициента трансформации регулировочного трансформатора, путем согласного включения обмоток при положительных добавках, и противовключения при отрицательных.